
Selection on Finite Sites under COmplex Demographic Events

(SFS CODE)

Ryan D. Hernandez
Draft date: August 15, 2015

Preface
This is the user’s guide to SFS CODE. It outlines how to compile and use the program, and many (but
not all) of the details regarding specific algorithms and underlying data structures implemented
in the C source code. Table 6 on page 56 outlines every option implemented in SFS CODE, with a
linked page reference indicating where each option was described in the text.

Please note that this program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version. This program is distributed in the
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. A copy of the GNU General Public License should be in the folder
doc that was distributed with this program. If not, see http://www.gnu.org/licenses/.
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1 Overview

The program that this document is dedicated to can be described in a single sentence as follows:

SFS CODE is a generalized Wright-Fisher style forward population genetic simulation pro-
gram for finite-site mutation (and indel) models with selection, recombination (crossing-
over/gene conversion), and demography across an arbitrary number of migrating pop-
ulations.

This means that an entire population of individuals (and all their chromosomes) is followed gener-
ation by generation, from the beginning of the simulation to the time of sampling. This is contrary
to coalescent simulations [such as ms; Hudson (2002)], where the history of a sample is simulated
backward in time until its founder. SFS CODE has the ability to simulate finite-site mutation models
(meaning that some sites can receive several mutations). Nonetheless, SFS CODE actually stores all
mutations that are either segregating or fixed in at least one of the populations, so it can also act
like an infinite-sites simulation program. However, its purpose is to generate a set of DNA sequences
(an alignment) that can then be analyzed. This alignment, by the nature of the simulation, can
therefore contain sites that have been the target of many mutations (as well as repeatedly being
selected upon).

As described in further detail in subsequent sections, SFS CODE allows the user to simulate
highly detailed populations, with at least as much flexibility as ms. In addition to allowing for fairly
complex demographic effects and migration (and/or admixture) schemes, SFS CODE also allows
the user to simulate coding versus non-coding regions, apply a distribution of selective effects
to new mutations (including arbitrary models of dominance), generate domesticated populations,
assume different male and female population sizes, linked and unlinked loci, sex and autosomal
chromosomes, polyploids (haploid, diploid, or tetraploid), as well as a suite of built in or custom
mutation models.

The basic algorithm used in this program is as follows:

1. Sample a sequence from the stationary distribution of the mutation model.

2. Burn-in a single population to mutation/selection balance.

3. Perform demographic and other evolutionary events.

4. Sample individuals from populations.

Each generation consists of the following components:

1. Produce each individual by randomly sampling a mother and a father from the previous
generation (with replacement according to their relative fitness for their sex, unless simulating
haploids, in which case there is no sex).

2. Randomly select individuals to migrate among populations.

3. Distribute a Poisson number of recombination/mutation events.
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2 Citing this program

R. D. Hernandez. A flexible forward simulator for populations subject to selection and demography.
Bioinformatics. 24(23):2786-7 (2008).

3 Getting Started

3.1 Obtaining the Program

SFS CODE can be download from http://sfscode.sourceforge.net/. After following the down-
load link, I highly recommend you to click the ”Monitor this package” link (it looks like an envelope
with a plus sign). You need to set up a free account through sourceforge.net, but will allow you
to stay on top of updates. There are also two mailing lists that I encourage you to use: sfscode-
users and sfscode-updates. The former allows users to email each other to ask questions about the
functionality of SFS CODE, and the latter is where I will announce new releases and bug fixes.

3.2 Compiling the Program

This section is only if you have downloaded the source code and wish to compile the program
yourself. If you are using the web-based version of the program, then you can skip this section.

After obtaining the program (likely a file called “sfscode yearmonthday.tgz”), move it to
a folder on your computer. You can unzip the file by double-clicking it and hoping your computer
knows what to do, or open a command-line terminal and type “tar -xzvf file.tgz”. Inside this
folder, you will now find a file called makefile and a few subdirectories (e.g.doc/, which contains
this documentation; sfs code DIR/, which contains the .c and .h files that are SFS CODE; etc.).
The makefile will be used to compile all the programs provided with this distribution. It uses
GNU’s gcc compiler. Using your favorite command-line terminal (Windows users should download
and install Cygwin from http://www.cygwin.com or another such application), and type make. This
will create the directory bin/, which will contain the executables sfs code, convertSFS CODE, as
well as any other programs in the current distribution.

If you get compiling errors, it is likely that either you do not have gcc installed. If this is
true, then you either need to remedy the situation, or change the makefile to use your favorite
compiler. If you are using Cygwin, you may need to update your version, making sure to install
gcc (there are a series of boxes to click whilst updating the program). If you use a mac, then make
sure you’ve installed the developer toolkit. Note, if you are planning to use the Intel compiler, you
may need to edit the source code sfs code.c by uncommenting the very first line (delete the “/*”
at the beginning and “*/” at the end; this enables functions that Intel deems as “safe” but are not
part of the standard C library, and will get rid of annoying warning messages). If you use a mac,
further optimizations can be obtained by replacing -O3 with -fast near line 11 of the makefile.

3.3 Usage: Arguments at the Command Line

SFS CODE is a command-line program. If you have already compiled the program, then you should
be ready to go. Change directory to SFS CODE/bin. A full list of options can be found in Table 6
on page 56.
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The basic command to run SFS CODE is as follows:

./sfs code <Npops> <Niter> [<options> [arguments]]

Where <Npops> is the total number of populations you want to simulate, and <Niter> is the total
number of iterations you want to run. In this documentation, arguments and options that are
enclosed in <angled brackets> are required, and those in [square brackets] are optional. Subse-
quently, those in both angled and square brackets can be required in some potentially optional
instances (e.g.[<options>...], if you include anything after <Niter> then they must be options,
which may contain required and/or optional arguments).

In SFS CODE, all options have both a long name and a short name, except for timed
events (beginning with ‘-T’, described later, and only use the short name). For example, to set the
mutation rate, you could use either “-t θ” or “--theta θ” to achieve the same result. Though
both long and short names are case-sensitive, long names are of arbitrary length and tend to be more
descriptive of the option. Short names are a single letter (so the options that were implemented
later have short names chosen from the dwindling list of letters). Note that long names are preceded
by two dashes (“--”) while short names are preceded by only a single dash (“-”). Both the long
and short names of all options are provided in Table 6 on page 56.

In the text of this document, I will provide templates for each option, as well as numbered
examples. In option templates, I will first give the long name, then the short name in parenthesis,
followed by the format of its arguments, as in the following pattern.

--long name (-short name) [arguments]

As a first example, the help menu can be obtained using the option

--help (-h)help menu

This means you would access the help menu by typing “./sfs code 1 1 -h”. In this special
example, the number of populations and number of iterations do not need to be specified, so you
could just type “./sfs code --help” or “./sfs code -h”.

Many parameters of the simulation can be set specifically for a single population (if multiple
populations are simulated, see section 4.3) or for a single locus (if multiple loci are simulated, see
page 8). These features will be indicated in an option template as follows.

--long name (-short name) [P <pop>] [L <locus>] [args]

This would indicate that one could specify a single population or a single locus. This P should not
be confused with the italicized P , which refers to the ploidy number such that PN is the total
number of chromosomes in a population.

4 Running SFS CODE

The most basic simulation is the following:

Ex. 1. $ ./sfs code 1 1
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Typing example 1 (excluding the $, which just represents the bash shell; in Windows, you also might
not need the “./” bit either) into the command prompt will result in running a single iteration
of the default simulation. The default parameter values are given in section 12 toward the end of
the documentation, and consists of simulating a coding sequence of length 5001 nucleotide base
pairs from a “standard neutral” population of 500 diploid individuals, where the population scaled
mutation rate θ = 0.001/site with no recombination, from which a sample of 6 individuals (12
chromosomes) will be drawn. By “standard neutral” population, I am referring to a population
that is devoid of every evolutionary force other than mutation and drift. The full list of default
parameter values is given in the Default Parameters section below.

The mutation rate per site (θ = 4Neµ, for a diploid population) can easily be increased to
a value of 0.01 per site using the option

--theta (-t) [P <pop>] <θ> mutation
rate

as follows:

Ex. 2. $ ./sfs code 1 1 -t 0.01

Recombination can involve both crossing-over and gene conversion (which may be GC-
biased). Crossing-over is easy to incorporate using the following template (see section 4.5 for a
longer discussion involving gene conversion):

--rho (-r) [P <pop>] [F <filename>] <ρ> cross-over
rate

where ρ = 4Ner is the population scaled rate of cross-over between adjacent sites for a diploid
population (though the males in a population will never recombine on sex chromosomes, see page
10). There are two options. In the simple case, just specify the value of ρ for a uniform cross-over
rate across all sites. For example, the following would simulate a standard neutral population with
per site mutation and cross-over rates equal to 0.01.

Ex. 3. $ ./sfs code 1 1 -t 0.01 -r 0.01

Alternatively, you can specify a generic recombination map (which allows for hotspots, see
section 4.5.1) using --rho F <filename> <ρ>. This general recombination map will apply to both
cross-overs and gene conversions. Note that this option is not available to CBSU web cluster users.
The recombination file should contain the following information. Note that this file has a new
format as of February 2009. The first line has one value, the number of points that the map is
evaluated at. For example, in human genetics, the HapMap study produced a recombination map
with a recombination rate evaluated at all HapMap SNP locations, so the number of points on the
map is the number of SNPs contained in the region being simulated. Each additional line then
contains two values: the basepair position, and the cumulative probability of a recombination event
occurring before this point. The last line should contain the total number of basepairs simulated
as the first entry, and 1.0 as the second entry, since with probability 1 a recombination will have
occurred somewhere (if a recombination event occurs). The file does not need to contain information
regarding loci (discussed later), that is automatically accounted for by the program.

Recombination can also be a sex biased phenomenon. To alter the proportion of recombi-
nants (both cross-overs and gene conversion) occurring during male versus female meiosis, use the
option
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--pMaleRec (-Y) [P <pop>] <p>sex-biased
recombina-

tion
rate

in which case recombination events will be assigned to the paternal lineage with probability p
(p = 0 implies that recombination only occurs in females while p = 1 implies recombination is only
in males. p = 0.5 is the default, meaning that recombination occurs in each sex uniformly). This
does not alter the total number of recombination events that are distributed. More specifically,
each generation, a Poisson number of recombination events are uniformly distributed to individuals
in a population. For each chosen individual, the inherited recombinant chromosome will come from
the paternal lineage with probability p, otherwise it will come from the maternal lineage.

In general, you will want to do several (perhaps several thousand) simulations. Doing so
requires some patience (this is a forward simulation, after all). However, multiple simulations
can be performed iteratively by changing the parameter <Niter>. Doing multiple simulationsmultiple

iterations this way is beneficial, as compared to running them all independently, because SFS CODE is able to
take advantage of all the effort that went into all the previous burn-in periods. After an extensive
initial burn-in period, the population will be at stationarity. It is much easier to obtain a pseudo-
independent draw from a population at stationarity than it is to reach stationarity. Figure 1 shows
how this is done.

The default initial burn-in time is 5×PN generations (where P is the ploidy, see page 12,
and N is the initial simulated population size, see page 11), while subsequent burn-in periods are
only 2×PN . You can change the initial burn-in time using

--BURN (-B) <burn>initial
burn-in

time and change the subsequent burn-in periods (for iterations > 1) using

--BURN2 (-b) <burn>subsequent
burn-in

times This would set the initial or subsequent burn-in times to <burn>×PN generations.

In SFS CODE, it is also possible to simulate an arbitrary number of loci (linked or unlinked)
of arbitrary length using the following option.

--length (-L) <nloci> <L1> [<L2>...<Lnloci>] [R]number of
loci &
length

This option allows you to simulate <nloci>. The first locus will have length <L1>. You can stop
here to set all loci to the same length. Otherwise, you have two options. You can specify each of
<L2>...<Lnloci> to set the lengths of each locus, or if you have a repeating pattern (e.g.a short
locus followed by a long one) you can specify a subset of lengths followed by the character ‘R’. For
example, if you want to simulate 4 loci, with lengths (500bp, 1kb, 500bp, 1kb), then you could use
either of the following commands.

Ex. 4. $ ./sfs code 1 1 -L 4 500 1000 500 1000

$ ./sfs code 1 1 -L 4 500 1000 R

Note that simulating long loci in SFS CODEcan be a computational challenge. This is because

SFS CODEonly stores unique haplotypes at each locus, but if the locus is long then the number of

unique haplotypes approaches the total population size. Instead, simulating multiple linked loci
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can be beneficial. Included in the distribution is the perl script optimizeLL.pl. This script will
allow you to enter relevant parameters of your desired simulation (L, N , θ, ρ, and selection
parameters). It will then perform a heuristic grid search for the optimal partitioning of the
desired locus. This can also be performed on your own using a cluster for potentially much
faster results.

You can change the linkage among loci using the next option.

--linkage (-l) <p/g> <d1> [<d2>...<dnloci-1>] [R] linkage
among loci

The first argument to this option must either be ‘p’ or ‘g’, indicating whether the distance
between loci will be be <p>hysical distance (in basepairs) or <g>enetic distance (recombina-
tion fraction). The second argument is the distance between the first two loci. This is all you
need if you want all adjacent loci to have the same distance. Otherwise, (again) you have two
options. You can either specify the distance between each pair of adjacent loci (i.e. provide
<nloci>-1 values), or, if you have a repeating linkage structure you can specify a subset of
distances followed by the character ‘R’. For independent loci, you can use “--linkage p

-1” or “--linkage g 0.5”. As an example, consider simulating 2 independent genes, each
having 4 exons with lengths as in example 4 that are equally spaced with 2kb introns. You
could simulate this as follows.

Ex. 5. $ ./sfs code 1 1 -L 8 500 1000 R -l p 2000 2000 2000 -1 R

Moreover, you can annotate each locus as being either coding or non-coding, and sex
or autosomal. By default all loci are autosomal coding regions. If you would like to specify

Long burn-in
Short steps

between iterations

Independent starting
 points for each

iteration

τ=0

τ=τE

Figure 1: Simulating multiple iterations in SFS CODE begins with a long burn-in time, followed
by relatively short steps (∼ 2PN generations) between each iteration. Ancestral information at
the beginning of each iteration is stored, such that the each starting point is a random draw of
a population at mutation/selection/drift balance (each iteration uses the burn-in of all previous
iterations).
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whether each locus is coding or not, use the following option:

--annotate (-a) [F <filename>] [<a1> [<a2>..<aR>] [R]]annotate
coding or

non-coding There are two options here. You can either specify the annotation of each locus using a file
(in which case you would use F <filename>) or you can specify the the annotation for each
locus individually, where ai = ‘C’ or ‘N’ to indicate that the ith locus is coding or non-coding
(respectively). If you want all loci to have have the same coding/non-coding annotation,
just specify <a1>. Otherwise, you can either specify the annotation of all R loci, or specify
the pattern to be repeated followed by the character ‘R’. If you are using a file to annotate
your simulation (an option that is not available to users of the CBSU web cluster), the file
should contain the following information. On the first line should be a single number, the
total number of loci, followed by a semicolon. Each additional line should correspond to the
information about each locus (either the annotation of that locus or the physical distance
between loci). To annotate a locus, a line should contain a coma-delimited list of 5 elements:
the length of the locus, the nucleotides used for this locus (or blank to generate random
sequence), ‘N’ or ‘C’ to indicate non-coding or coding, the type of selection followed by its
parameters separated by a space (e.g.‘0’ for neutral, “1 <γ> <ppos> <pneg>” for a constant
selective effect, etc.), and the constraint parameter f0 for the given locus. Information on
the last two entries can be found in section 4.2. You can also specify the physical distance
between loci in this file (genetic distance is not allowed), but it is optional (default is to
assume all loci are physically adjacent). To specify the distance, simply include the number
of bases followed by a semicolon. If you are going to include inter-locus distances, they should
be interleaved with the locus annotation. For example, consider the following annotation
file:

3;

3000,,C,0,1;

1000;

3000,,C,0,1;

1000;

3000,,C,0,1;

This specifies that there are 3 loci, each is 3kb, will be composed of a random sequence,
is coding, with no selective effects or constraint. Each of the loci has a 1kb gap between
them that will not be simulated. Note that for the gap to be meaningful, you must also
specify a recombination rate (as described on page 7). Note that if you do not specify an
inter-locus distance, then it is assumed to be zero.

Important note: SFS CODEdoes not allow mutations to stop codons in coding regions.
They are not lethal mutations, they are simply never allowed to occur. However, in some
instances, stop codons can creep into a coding sequence via recombination. SFS CODEdoes
not check for these rare occurrences.

To specify whether each locus is sex or autosomal, use the following option:

--sex (-x) <x1> [<x2>..<xR>] [R]annotate
sex/autosome
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which has the same structure as option --annotate, but xi = ‘0’ or ‘1’ to represent au-
tosome or X-linked (respectively). Note that it is assumed that males never recombine on
sex chromosomes (they are simulated to have an X and a Y chromosome). To generate
pseudoautosomal regions, you can use two or more loci and make at least one of the loci
autosomal. However, doing so would make the simulated Y chromosome useless. Note that
in the output, the first chromosome (or pair if tetraploid) refer to the X and the second (pair
if tetraploid) refers to the Y. This may not be a very good model of sex chromosomes in
tetraploids.

Note that options --linkage, --annotate, and --sex must be specified after indicat-
ing the number of loci to simulate using option -L (unless there is only a single locus being
simulated).

The ancestral population size used in a population genetic simulation is not as
important as one might imagine (so long as all parameters are population-scaled, the actual
size cancels). However, it can be changed from the default of 500 using the following option.

--popSize (-N) [P <pop>] <size> population
size

This option would set the ancestral population size to the value <size>. For efficiency sake,
the value you use should be kept as small as possible (but no smaller!!). The default is
500 diploid individuals, which should be sufficient for most purposes. However, if you are
simulating a distribution of selective effects where the mean of the distribution is greater
than the population size (in absolute value), then the entire population might go extinct. A
realistic distribution inferred from human polymorphism data might induce such an effect.

It is important to note at this point that many parameters implemented in SFS CODE

can be updated at any time during the simulation. These are described in the next section
as well as in section 4.9. A full list of parameters that can be changed at a specific time can
be found in Table 6, and are indicated by an asterisk (*) next to the shortname.

4.1 Population Expansions and Bottlenecks

Natural populations fluctuate in population size, and any simulation program should ac-
commodate this biological feature. However, it is often not necessary to simulate the exact
trajectory of the population size, just the major trends (i.e. the time of an expansion, or
the severity of a contraction along with the degree of recovery). SFS CODE implements four
types of demographic events:

1. set the population size to a new value:

-TN <τ> [P <pop>] <Nnew> population
size change

2. change the population size by a relative amount (ν = Nnew/Nold):

-Td <τ> [P <pop>] <ν> relative
size change

3. allow the population size to start changing exponentially:
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-Tg <τ> [P <pop>] <α>exponential
growth

4. or commence logistic growth/decay:

-Tk <τ> [P <pop>] <K> <r>logistic
growth

Each of these options begin with ‘-T’. This indicates to SFS CODE that an evolutionary
event will occur at a specific time (<τ>, the first argument). The next character (one of
‘N’, ‘d’, ‘g’, or ‘k’) indicates the type of demographic event (NOTE: only short names are
accepted for timed events). The first argument for these options is the time parameter
<τ>. Time is scaled by the effective size of the ancestral population (essentially the number
of generations since the end of the burn-in divided by the number of chromosomes in the
ancestral population). Next there is an optional parameter that would allow you to specify
a specific population. If you want the demographic event to be applied to all populations (or
you are only simulating a single population), then this is not necessary. Otherwise, if you
only want to apply the demographic effect to population 0 (see description below on how to
simulate multiple populations), then you would use ‘P 0’ here. Using the character ‘P’ in
your command tells SFS CODE that the next parameter is a population and not the value for
the size change effect.

Finally, if you are using ‘-TN’ include the new size of the population <Nnew>. If you are
using ‘-Td’ include the relative size change <ν> = new size/current size (note that current
size is NOT necessarily the ancestral size if you have multiple changes). If you are using
‘-Tg’ include the exponential rate of growth/decay <α>. The parameter α determines the
size of the population at time t by the equation N(t) = N0e

α(t−τ), where time is scaled by
PNA (the number of chromosomes in the ancestral population, n.b. in a diploid population
P = 2), τ is the time that the population size started changing, and N0 is the size of the
population when it started changing (not necessarily the ancestral size!). This implies that
if you want the population to grow from N0 individuals to NF individuals in (t− τ)×PNA

generations, you would invert the exponential equation to find α = ln
(
NF
NA

)
/(t− τ). If you

are using ‘-Tk’ for logistic growth, include the carrying capacity <K> (the final population
size) and the rate to approach it <r>. For logistic growth, the size of the population at time

t is determined by the equation N(t) = KNAe
r(t−τ)

K+NA(er(t−τ)−1)
.

SFS CODE is a forward simulation program, so it thinks about time going forward. You
can think of the burn-in period as “negative time”, with the simulation actually starting
at time zero (when the burn-in ends), and progressing forward in generations. Rather than
referencing a specific number of generations, however, time is referenced in terms of PNA

generations, where NA is the ancestral (original) population size and P is the ploidy (if you
are simulating a diploid population, then P = 2 [the default], while P = 1 for a haploid
population and P = 4 is a tetraploid population). You can change the ploidy using the
following option:

--ploidy (-P) <P>ploidy

where P can be 1, 2, or 4. If P=4, you can specify either autotetraploid population or
allotetraploid using
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--tetraType (-p) <0/1> type of
tetraploid

where 0 indicates auto- and 1 indicates allotetraploid.

Keep in mind that the time scaling does not change as the population sizes change
(though the amount of evolution taking place each generation can be considerably different).
This is similar to ms, but instead of having a diploid time scaled in units of 4N0 generations
(with N0 the size at the time of sampling), SFS CODE would scale time in units of 2NA

generations.

In SFS CODE, it is also necessary to tell the simulation program when to end using
the option

-TE <τ> [pop] ending
simulation

where again, time (τ) is scaled in units of PN0 generations. In the simple applications above,
the simulation actually ended when the burn-in period was over (i.e. at time τ = 0). In
general, you can end the simulation for any population at any time (useful for generating
samples from now extinct populations, such as neandertal), but in most situations you will
terminate the evolution of all populations when you sample at the end of the simulation.
To be more specific, the simulation ends when the last evolutionary event takes place. The
“-TE” option just allows you to put a place holder until a specific generation.

If you want to simulate a model for an African population of humans, you might
consider a simple 2-epoch model, where there was a constant ancestral population size (NA)
which instantaneously changed by a factor ν = NC/NA some time τ ago (in units of 2NA

generations). A diagram of this model is shown in figure 2. To implement this model in
SFS CODE, you would consider time during which the population has its ancestral size as
the burn-in period. At the end of the burn-in period, the population instantaneously grows
by a factor ν, and maintains the new size for 2NAτ generations, when the simulation ends.
Abstractly, this is implemented in SFS CODE as

Ex. 6. $ ./sfs code 1 1 -Td 0 ν -TE τ

Notice that the demographic event actually occurs at time zero, with the population
maintaining it’s new size for τ units of time until the simulation ends. The parameters of
such a model were inferred by Boyko et al. (2008) using synonymous SNPs across the human
genome from an African American (AA) population. Our inferred demographic model is
shown in figure 2. Simulating the AA demographic history using their inferred parameters
is easy:

Ex. 7. $ ./sfs code 1 1 -Td 0 3.3 -TE 0.4377

The equivalent command in ms would be:

./ms 12 1 -t 16.5 -eN 0.066 0.303.

Note that ms requires θ = 16.5. This ensures that the ancestral population has θ = 5, which
is the case for the SFS CODE simulations (θ/per site = 0.001 across 5kb).
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A simple demographic model for European populations is a 3-epoch bottleneck model.
This model is also shown in figure 2, and consists of an ancestral population size (NA), a bot-
tlenecked population size (NB), and a current population size (NC). In SFS CODE, generations
begin accumulating when the first demographic event occurs (i.e. τ = 0, when the popula-
tion decreases in size). The second demographic event occurs at the end of the bottleneck
(τ 2→ = 7703gen./(2NA) = 0.48), and the simulation ends at τE→ = 8577gen./(2NA) = 0.54.
Given these parameters, this model is also straightforward to implement:

Ex. 8. $ ./sfs code 1 1 -Td 0 0.722 -Td 0.48 5.27 -TE 0.54

The corresponding command in ms would be:

ms 12 1 -t 19.02 -eN 0.00728 0.19 -eN 0.0714 0.263.

You can change the sample size using the option

--sampSize (-n*) [P <pop>] [R <τd> S <τ1>]] <SS1> [<SS2>...<SSNpops>]sample size

If you are only simulating a single population or you want to sample the same number of
individuals from each population, then you can simply use “-n <SS>”. If you want to set
a specific sample size for each of n populations, use “-n <SS1>...<SSn>”. Alternatively, if
you just want to change the sample size of population i, then use “-n P i <SSi>”. Note that
individuals are sampled, so if you simulate a diploid population (P=2), then 2 chromosomes
will be printed at each locus for each individual. This option allows you to sample the
population at arbitrary times by setting a timed event (see section 4.9) using -Tn. In this
case, you must include the time of sampling ¡τ¿ (in population-scaled generations) and the
sample sizes. You can set up recurrent sampling using R <τd>, where a sample will be taken
every τd population-scaled generations after τ . Sampling will continue to the end of the
simulation, or stop at an arbitrary time S <τ1>. Sampling can be population-specific by
including the P flag as before.

4.2 Distribution of Selective Effects

One of the many important components of a forward population genetic simulation program
is natural selection. SFS CODE assumes a simple multiplicative (the default) or additive
model of genic selection by default. In the case of multiplicative selection, this means that
the fitness of an individual is just the product of the fitness effects of each mutation they
carry. In general, a new mutation will have fitness 1+hs, where h is the dominance coefficient
(h = 1.0 means codominance or genic selection) and s is the selective effect (s > 0 indicates
positive selection, s < 0 indicates negative selection, and s = 0 indicates neutrality). An
individual that is homozygous for such a mutation would then have fitness (1 + s)2. The
selection coefficient is related to the population scaled selection coefficient γ = 2Nes. Because
population genetic theory is generally based on inference of γ, SFS CODE draws γ from a
specified distribution (discussed below), then divides it by PNC, the number of chromosomes
in the population when the mutation arises (note that P is the ploidy, which is 2 for the
default diploid population). SFS CODE then uses s to determine the fitness of each individual,
and normalizes by the mean fitness in the population.
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Figure 2: The simple demographic scenarios considered considered in section 4.1. Parameters (τ
and ν) with subscript → are for SFS CODE (forward time), while those with subscript ← are for
ms (pastward time). The horizontal axis represents time in generations (with t = 0 at the first
demographic event). To obtain τ→, divide the accumulated number of generations by (2×NA). To
obtain ν→ divide the new population size by the current population size at each transition. This
methodology differs from ms, where the population size at time of sampling is generally the base.
The number of generations and the effective population sizes for both populations were inferred by
Boyko et al. (2008).

Instead of a multiplicative model of selection, you can simulate an additive model using
the following command

--additive (-Z) additive
model

with no arguments. In this case, the fitness of an individual is calculated as 1 plus the
sum of the fitness effects of all mutations carried by the individual. Note that the additive
and multiplicative models are very similar, and usually result in only subtle differences. A
individual homozygous for a mutation with selective effect s will have fitness (1 + s)2 =
1 + 2s+ s2 under the multiplicative model while the same individual will have fitness 1 + 2s
under the additive model (a difference of only s2, which may be quite small if selection is
not huge).

It is important to note that SFS CODE only implements shift models of selection. This
means that as soon as a selected mutation is fixed in the population, the fitness effect of the
site returns to 1 (barring any other mutations that may have arisen at the same site). This
avoids problems such as Muller’s Ratchet, where the accumulation of deleterious mutations
drives the population into the ground (though this can still happen if selection is strong
enough and the population is small enough such that all individuals carry different lethal
mutations). Shift models are also in contrast to models such as the House of Cards model
that was developed by T. Ohta in the 1960s (whereby assuming a normal distribution of
selective effects will eventually lead to the fixation of an allele with selective effect ≥ 8
standard deviations above the mean, at which point evolution nearly halts).
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You can specify the distribution of selective effects using the following option:

--selDistType (-W*) [P <pop>] [L <locus>] [H <type> [args]] [*F <alleleFreq>selective
effects [w] [T [R <minFreq> <maxFreq> [S] [A [G <gens>]] [M <maxReps>]] [F [a]

<file>]]] <type> [args]

Where <type> [args] are outlined in Table 1 on page 16, and the optional flags ‘P’ and ‘L’
allow you to specify a single population or locus (respectively, if simulating more than one
population or locus). For ‘L’, it is also possible to specify ‘O’ or ‘E’ to indicate all “Odd” or
“Even” loci, respectively, when you want parameters to alternate from one locus to the next.
A fairly arbitrary model of dominance can be applied using ‘H <type> [args]’ (the types
of distributions are analogous to the selection distributions in Table 1, except that there is
only a single Γ-distribution for type=2. Note that in SFS CODE, codominance is indicated
by h = 1.0. The selection option can be used as a timed event (-TW) to enable selection on
standing variation. When this is invoked, a time <τ> must be specified, and you can now
use the flag F to indicate a particular frequency of the allele to be selected. This simulates a
model of selection on standing variation. A SNP will be chosen randomly to match the
indicated frequency, and the selection regime indicated by <type> [args] will determine the
selection coefficient. For example, to specify a selection coefficient γ = 2Ns = 100, you would
use 1 100 1 0. After specifying a frequency, you can include the flag w to force selection
only only an indicated population (must use flag P <pop>). Note that the w flag is only
functional when all other mutations are neutral, and that the output will be slightly wrong,
because the selected mutation will have the given selection coefficient for all populations.
Using the flag T, you can track the frequency trajectory of the selected mutation, and only
print output when it achieves a particular frequency range using the flag R <minFreq>
<maxFreq> (include S to stop the simulation the first time the allele is in the specified
range). The simulation can automatically restart if the selected allele is lost or fixed using
the flag A, or stop some number of generations after fixation using flag G <gens>. Note
that with the A flag, if your frequency range includes 1.0, then the simulation will stop the
generation the allele fixes. The simulation will attempt the achieve the desired sampling

Table 1: Selection: arguments for option --selDistType (-W)

<type> [args] description
0 ∅ Neutral (gamma = 0 for all mutations).

1 <GAMMA> <p pos> <p neg>

3-point mass model. Single γ (> 0) for both deleterious
and advantageous mutations. With probability <p pos>

the sign is positive, with probability <p neg> it is negative,
otherwise with probability 1-<p pos>-<p neg>, γ = 0.

2 <p pos> <aP> <lP> <aN> <lN>

Gamma (Γ) distributions. With probability <p pos>

γ ∼ Γ(<aP>,<lP>) (mean = aP/lP, var. = aP/lP2), other-
wise γ ∼ -Γ(<aN>, <lN>).

3 <mean> <var>
Normal distribution. Mean = <mean> and variance =
<var>.

4 ∅ Advanced option. Predefine distribution in file gencon-
textfreq.c, see text.
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range 10,000 times then abort the mission, but you can update the number of trials using
flag M <maxReps>. The frequency trajectory of the selected allele can be output to a file
using the flag F [a] <file>, where [a] is included to append to an existing file.

As an example, to simulate rampant positive selection, where all new nonsynonymous
mutations have γ = 5.0, you would use

Ex. 9. $ ./sfs code 1 1 -W 1 5.0 1.0 0.0

To simulate a situation in which 70% of new nonsynonymous mutations are deleterious with
γ = −5, 10% are advantageous with γ = 5, and the remainder are neutral, you would use:

Ex. 10. $ ./sfs code 1 1 -W 1 5.0 0.1 0.7

To simulate selection on standing variation, where a neutral allele reached 5% frequency,
and then became selected with γ = 2Ns = 10 and was sampled at frequency 80% in the
population 0.5× 2N generations after selection began, you would use:

Ex. 11. $ ./sfs code 1 1 -TW 0 F 0.05 T R 0.75 0.85 A 1 10.0 1.0 0.0 -TE 0.5

Note that the flag -TE 0.5 (discussed on page 13) is necessary for selection on standing
variation to function. If you want to simulate until fixation, specify the end of the simulation
far off into the future and use the flag A to stop the simulation. If the end of the simulation
occurs before fixation, then your selected allele will not be fixed!

For a more complicated scenario, in which you want a distribution of positive and
negative selection, we have <type>=2, which implements a mixture of Gamma distributions
(Γ(·)), one that corresponds to positive values of γ and one that has been reflected across
the y-axis to capture a distribution of negative values. For example, if you want to assume
that 90% of new nonsynonymous mutations are deleterious with a selection coefficient drawn
from Γ(1, 1) (a simple exponential distribution) and the remaining 10% are advantageous
and drawn from Γ(50, 10) (having mean = 5 and variance = 0.5), then you could use the
following example.

Ex. 12. $ ./sfs code 1 1 -W 2 0.1 50.0 10.0 1.0 1.0

Note that for example 12, the distribution of deleterious effects reduces to an exponential
distribution, while the distribution of advantageous effects has a mean and mode at 5. This
mixture distribution is shown in figure 3. Of course if you simply want a Γ-distribution of
negative selection (assuming no positive selection), then you can simply set <p pos> = 0.

The fourth <type> (number 3), is a simple normal distribution. With a mean of
zero, Cutler (2000) refers to the normal distribution of selective effects a model of positive
selection. This is because on average, half of the new mutations will be advantageous, and
a majority of the deleterious mutations will be eliminated.

The final <type> of model for the distribution of selective effects is an “advanced”
option. For this option, you can create as complicated a distribution as you’d like in another
statistical package (R, for example). This distribution can be discretized into an arbitrary
number of bins of equal density (using the quantile function in R, for example). These
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bins are then copied into the vector fitQuant that is stored in the file gencontextrate.c.
After changing this vector, the program must be recompiled (this is the only reason that it
is referred to as an “advanced” option... more realistically, it is a rudimentary option that
requires more work, but provides the ultimate flexibility). This model is actually preferred
to <type>=2, as it is much quicker to randomly sample from a discretized distribution than
it is to draw from a mixture of Γ-distributions. However, population size changes cannot be
accommodated with this option.

It is also possible to specify that one population remain a neutral population. This can
be useful if you want to specify a common distribution of selective effects for all populations
but one. This is done using

--neutPop (-w) <pop>neutral
population

When simulating multiple populations with selection, it is important to know that the
selection parameters (excluding the type of selection) will be inherited from the ancestral
population. This is to allow the effects of ancestral population size changes (described
in the next section) to be propagated through to the daughter populations. If you want
the parameters to be different, you must use a timed event to change their values (as
described in section 4.9). An exception to this rule is the --neutPop (-w) <pop> option,
which will force the indicated population to be neutral from the time it is created until the
end of the simulation (barring any invocations of a subsequent timed event).

Mixture of Gamma distributions
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Figure 3: A distribution of selection coefficients, where 90% of new mutations would be deleterious
with γ ∼ −Γ(0.231, 0.1279), and the remaining are drawn from γ ∼ Γ(50, 10).

Selective Effects with Demography

When population sizes change, the relative effect of selection changes (selection is stronger
in a larger population). This effect is accommodated by altering the distribution of the
population scaled selection coefficient. For constant (type 1), gamma (type 2), and normal
(type 3) distributions this is easily accommodated since multiplying these distributions by a
scalar has a known distribution. However, for the custom distribution of selection coefficients
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(type 4), population demography cannot be accommodated. If a custom distribution of
selection coefficients is used and the population sizes change, then the same distribution of
γ will be used (thereby inflating/deflating s to maintain a constant value of γ).

Selective Constraint

In the way that Kimura outlined the neutral model of evolution, some proportion of non-
synonymous mutations are completely lethal, and never contribute to polymorphism. All
other nonsynonymous mutations were completely neutral, and had no selective effect at all.
As a result, it is often of interest to simulate data under such a neutral model (or allowing
some proportion of nonsynonymous mutations to be lethal in general while the remain-
ing nonsynonymous mutations follow the specified distribution of selective effects). This
also generalizes to non-coding regions, where some proportion of mutations can be lethal.
In Kimura’s model, the parameter f0 represents the proportion of neutral mutations. In
SFS CODE, you can adjust the non-lethality parameter using the following command.

--constraint (-c) [P <pop>] [L <locus>] <f0> non-lethal
mutation
rateThis option can even be used when simulating non-neutral models of evolution, as a way of

signifying that only some mutations will contribute to polymorphism.

The way this option works, is that for each nonsynonymous or non-coding mutation,
with probability 1 − f0, the fitness effect will be -1. This effectively sets the fitness of the
individual to zero (as the fitness of the individual is defined as 1 + s). This means that any
mutations that are unique to this individual will also be lost in the next generation, as it
will not pass on any of its gametes. All synonymous mutations are assumed to be neutral
(i.e. none are considered lethal).

4.3 Multiple Populations

In the above examples, we have used exclusively a single population, with <Npops> = 1 as
the first parameter into SFS CODE. If we change this parameter, then we can simulate multiple
populations. Note that populations are numbered from 0 through <Npops>-1.

There are two ways to create new populations. You can either have a speciation event
or a domestication-style event. For a speciation event, one population will be split into
two identical populations (equal size, etc.). To split population i into two populations (i
and j) at time τ , you use the following template.

-TS <τ> <i> <j> speciation
events

For a domestication event, one population (i) will be split into two (i and j), but the
second population will primarily be composed of individuals that carry a particular derived
allele, chosen at random from all the alleles that have a specified frequency (within 5% of
<allele freq>). After choosing a particular allele from the founding population, SFS CODE

will randomly sample individuals that are homozygous for the allele. If there are not enough
homozygous individuals, then it will choose from the heterozygous individuals. If there are
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still insufficient individuals, then it will randomly choose non-carriers, until the specified
population size, <N> is reached (note that <N> must be less than the size of the parent
population i). The template for this option is as follows.

-TD <τ> <i> <j> <allele freq> <N> [locus]domestica-
tion

events If a locus is specified, then SFS CODE will try to find an allele in that particular locus (not
necessary if only simulating a single locus). If locus is not specified, then SFS CODE will
start at the center-most locus that is simulated. If there isn’t an allele near the specified
allele freq, SFS CODE will search adjacent loci until one is found. Failing to find any mu-
tations at the specified frequency, SFS CODE will select the allele that is closest in frequency.

Now that multiple populations have been initialized, it is essential to tell SFS CODE when
to end the simulation. This was mentioned above with regards to demographic effects,
but is worth mentioning again. This is done using the familiar option -TE <τ> [pop]. As an
example, say you wanted to simulate human polymorphism data with a chimpanzee outgroup
(assuming a population scaled divergence time of τ = 10 and an allopatric speciation event).
You could use the following:

Ex. 13. $ ./sfs code 2 1 -TS 0 0 1 -TE 10

This example would first generate a single population at stationarity during the burn-in. At
the end of the burn-in (τ = 0), the population would be split into two identical populations,
which would evolve independently until the end of the simulation (τ = 10).

As an example of a domestication event, consider a model for dog breed formation,
where you also want to simulate the ancestral dog population. This model is characterized
by a major bottleneck in the ancestral population followed by rapid growth. Then, after
growing for some time, 2 new breeds (of size 100 and 10) are formed using alleles at frequency
0.1 and 0.01 (respectively) in the ancestral population. These new breeds are then simulated
for 0.1× 2× 500 = 100 generations.

Ex. 14. $ sfs code 3 1 -Td 0.0 P 0 .1 -Tg 0 P 0 2 -TD 2.5 0 1 0.1 100 \
-TD 2.5 0 2 0.01 10 -Tg 2.5 P 1 10 -Tg 2.5 P 2 15 -TE 2.6

Let’s walk through this example step by step. First, sfs code 3 1 indicates that we are
going to simulate a total of 3 populations for 1 iteration. Next -Td 0.0 P 0 .1 indicates
that there is going to be a demographic event at the end of the burn-in period for population
0. This demographic event will shrink the population to 1/10th its size. After the major
contraction, -Tg 0 P 0 2 indicates that population 0 will start exponentially growing at
a rate of 2 per generation (the backslash ‘\’ indicates that the command stretches onto the
next line and can be ignored). Then, after 2.5 units of time, two new breeds are formed
from this ancestral breed. Population 1 is created by -TD 2.5 0 1 0.1 100, indicating
that an allele at frequency 0.1 in the parental population was used to form a population of
100 individuals. Population 2 is created by -TD 2.5 0 2 0.01 10, indicating that an allele
at frequency 0.01 is used to form a population of size 10. Both breeds then start growing
at an exponential rate (population 1 at a rate of 10, while population 2 grows at a rate of
15). Then, after another 0.1 units of time (100 generations, or approximately 200-300 years),
the simulation ends and we draw the default of 6 individuals from each population. This
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simulation takes about 2.3 seconds on a mac Pro with dual quad-core 2.8GHz Intel Xeon
processors and 6 GB RAM.

Sampling a Population at Several Time Points

If you are interested in looking at the dynamics of a process (say the frequency spectrum
of a population just prior to an expansion, just after an expansion, and N generations after
an expansion), you would want to sample a single population at several time points. There
is no direct way of doing this in SFS CODE, but there is a work around. You could use the
-TS and -TE options to duplicate a population and immediately stop the simulation for one
copy. For the example just mentioned, we could use the following command.

Ex. 15. $ ./sfs code 3 1 -TS 0 0 1 -TE 0 0 -Td 0 1 2 -TS 0.1 1 2 -TE 0.1 1 -TE

0.5

In this example, we are effectively simulating 3 populations, but as soon as one popula-
tion is created (as an exact duplicate of the ancestral population), the ancestral population
is terminated, halting the simulation for that population and saving its state in memory
until the end of the simulation, at which point it is printed.

Migration

Individuals are free to migrate to any extant populations. The migration rate matrix indi-
cates the average number of individuals in each population that are composed of individuals
from each of the other populations. For the migration matrix M, the (i, j) entry mi,j repre-
sents the expected number of individuals in population i that came from population j (this
is also referred to as the “backward migration rate matrix”). To set the migration rate, you
would use the command --migMat (-m). There are three ways to set the values of the migration

ratesmigration matrix, indicated by the first argument to the option being either ‘A’, ‘P’, or ‘L’.
You can set All entries to be the same value M:

--migMat (-m) A <M> all rates
equal

Note that this option specifies a symmetric island model, where the number of migrants into
population i is M . So, for <NPOP>=3, there would be M/2 migrants from both of the other
two populations. You can also set the migration rates explicitly from one Population to
another:

--migMat (-m) P <Pto> <Pfrom> <M> population
specific

which would specify that the average number of migrants into population Pto from Pfrom is
M. Finally, you can List the entire migration matrix:

--migMat (-m) L <M0,1>...<MNPOP,NPOP-1> list all
matrix
entries
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which would set each entry of the matrix. Note that the diagonal entries are not specified.
For example, if you have 3 populations and want to use option ‘L’, you should specify all
6 entries: M0,1,M0,2,M1,0,M1,2,M2,0,M2,1 (unlike ms, you do not need the place holders for
M0,0, etc.).

In SFS CODE, a Poisson number of individuals are chosen to migrate from population j
to population i each generation with expected value Mi,j. Each migrant out of population j
will be male with probability pMaleMig. You can set the male migration rate using

--pMaleMig (-y) [P <pop>] <pmale>male
migration

rate By default, pmale=1-propFemale, corresponding to the proportion of males in the origi-
nating population. By default, this is 0.5, but you can change the proportion of females
in a population using

--propFemale (-f) [P <pop>] <pf>proportion
of females

This can be set for all populations simultaneously, or for a given population explicitly.

One issue that is important to mention here is that while the population size of the
daughter population will be set during the split, migration parameters that have been speci-
fied at the command line will not be updated. This only becomes an issue when the ancestral
population changes size, and will only affect migration rates (other parameters are copied
identically from the founding population). For example, if you specify a symmetric migra-
tion rate using the option --migMat A M0, but you incorporate a 2-fold expansion in the
ancestral population, then the migration rates will not be the same after the split. This is
because the parameter M0 = 2N0m doubles when the ancestral population expands. How-
ever, when the new population splits off, it will maintain the value of M0. This would result
in the migration rates being different between the two populations. One way to work around
this is to set the migration rate at the time of the split using the timed option -Tm. The
flags to this option are identical to above, except that the first flag is the time (scaled by
PNa generations, where P is the ploidy), see Table 6.

Admixture

Admixture is a demographic process that involves the mixing of populations. African Amer-
icans are an example of an admixed population, having genetic ancestry from both African
(∼ 80%) and Europe (∼ 20%). Such an effect can be created in SFS CODE using the following
option:

--admix (-TJ) <τ> <P> <N> <Npops> <P1>..<PNpops
> <M1>..<MNpops

> [FAdmixture

<F1>..<FNpops
>]

Here, admixture occurs at a specified time (τ), which is why the short name begins with
-T. In SFS CODE, admixture creates a new population, allowing the ancestral populations
to continue evolving. The new population is numbered P , will have N individuals (see
discussion below regarding copying an ancestral population size) and is founded by Npop

22



ancestral populations. The ancestral populations are indicated using P1 through PNpop .
The proportion of ancestral population i contributing to the derived population is indicated
by Mi (1 ≤ i ≤ Npop). If you wanted to have males and females to contribute different
proportions to the derived population, let the Mi described before correspond to the MALE
representation, and specify F <F1>..<FNpop

> to indicate the female representation in the
derived population.

Regarding the population size. If you want the derived population to have the
same exact size as another population (population i, say), then you can set the population
size (N) to −i. So if you want the derived population to have the same size as population
1, you would just enter -1. If 0 is entered for population size, the effective size will be made
to equal population 0.

As an example, say you want to create an admixed population of 500 individuals from
two ancestral populations that diverged 2 × 2N generations ago. Suppose further that you
wanted 80% of the males in the derived population to come from the first population, and
only 20% of the females to come from the first population. You could use a command like
this:

Ex. 16. ./sfs code 3 1 -TS 0 0 1 -TE 2 -TJ 2 2 500 2 0 1 0.8 0.2 F 0.2 0.8

This command would split population 0 at the end of the burn-in, then after 2 × 2N
generations, population 2 would be created.

4.4 Mutation Models

There are 6 mutation models built into SFS CODE. The basic initiation of a mutation model
is as follows.

--substMod (-M) <mod> [args] substitution
model

Equilibrium nucleotide frequencies can be specified using

--baseFreq (-q) [P <pop>] <πC> <πG> <πT> <πA> equilibrium
nucleotide
frequenciesThe default values are 0.25 for all nucleotides. The equilibrium nucleotide frequencies are

incorporated into the mutation models described below, effectively allowing for much more
flexible models. For example, by specifying equilibrium nucleotide frequencies, the JK69
model becomes the F81 model (Felsenstein, 1981), and the Kimura 2-parameter model be-
comes the HKY model (Hasegawa et al., 1985).

Table 2 outlines the models and arguments for this option. The most basic mutation
model (<mod> = 0) was proposed by Jukes and Cantor (1969), and referred to as JC69.
This model assumes that the rate of mutation is equal among all nucleotides. A simple
modification of this model was proposed by Kimura (1980) to account for the observation
that most mutations tend to be transitions (A↔G or C↔T). This model (<mod> = 2) adds
another parameter (the transition/transversion bias, κ), and is referred to as the Kimura
2-parameter model (or just K2P). An extension of the K2P model would be to allow a
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Table 2: Mutation models: arguments for option --substMod

<mod> [args] description

0 ∅ JC69 model of equal mutation rates to and from all
nucleotides.

1 <ψ>
JC69+CpG Simple model of hypermutable CpGs,
where <ψ> is the non-CpG rejection rate.

2 <κ>
Kimura 2-parameter model, with <KAPPA> the
transition-transversion bias.

3 <κ> <κCG> <ψ>
K2P+CpG combining model 1 and 2, allowing separate
κ for CpGs.

4 ∅
ZG2003 the generalized K2P model, where each nu-
cleotide has its own transition/transversion bias (all pa-
rameters inferred by Zhang and Gerstein (2003)).

5 ∅

Context-Dependent model, where the mutation rate
at each nucleotide depends on both of its adjacent
neighbors (all parameters inferred by Hwang and Green
(2004)).

6
<a> <b> <c> <d> <e> <f>

General Time Reversible (GTR) model: a − f
are rate parameters, and base frequencies are set using
--baseFreq (pg. 23) Tavaré (1986)).

transition/transversion bias for each nucleotide (i.e. the rate of A→G is not equal to the
rate of C→T). Zhang and Gerstein (2003) fit the parameters of such a model to human data.
This model has been implemented in SFS CODE as <mod> = 4.

One feature of mammalian genomes is the presence of hypermutable CpGs (due to the
deamination of methylated C’s that are immediately 5’ of a G). SFS CODE implements a CpG
extension to both the JC69 model and the K2P model (<mod> = 1 and 3, respectively). This
is implemented by rejecting mutations at non-CpG sites with probability <PSI>. Given a
non-CpG site is rejected, a new site will be picked to mutate until either finding a CpG
or accepting a non-CpG site. Once accepting a site to mutate, it will either mutate to a
new nucleotide randomly (in the case of <mod>=1) or to a transitional nucleotide at a rate
equal to <κ> (in the case of <mod>=3). For substitution models 1, 2, and 3, the mutation
parameters (ψ and κ) can also be set for a single population using the following option.

--KAPPA (-K) [P <pop>] <κ>set the
value of κ

--PSI (-C) [P <pop>] <ψ>set the
value of ψ

The most detailed model that is implemented in SFS CODE is <mod>=5. This is a full
context-dependent substitution model, where the site-specific rate of mutation depends on
both of its adjacent nucleotides. This accounts for mutation rate variation due to CpGs
as well as other context-effects found by Hwang and Green (2004). Conditional on picking
a site to mutate, the replacement nucleotide will also depend on the flanking nucleotides.
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Choosing a new site to mutate is done using an inverse-CDF method, where relative hit-
probabilities are defined by the cumulative site-specific mutation rates. More generally, any
trinucleotide substitution model can be used by updating the 64×4 rate matrix Q in the file
gencontextrate.h and recompiling the program.

SFS CODE also supports a general time reversible model (GTR: Tavaré (1986)) as
<mod>=6. This model has 9 free parameters (3 frequency parameters and 6 rate param-
eters). When calling this mutation model, only the substitution rate parameters are entered
after this flag, the frequency parameters must be entered using the --baseFreq option. The
parameters of this model are not flexible, and cannot be changed for each population, or set
at a specific time.

While SFS CODE is based on simulating finitely many sites, it is also possible to simulate
data under a pseudo-infinitely many sites model. It is pseudo because multiple hits can
occur, but no more than one mutation will be segregating at a site at any given time. This
is specified using the following option.

--INF SITES (-I) infinite
sites model

Mutation Rate Variation Across Sites and Loci

Context-dependent mutation models impose mutation rate variation along a sequence. How-
ever, not all species show evidence for such a mutation process (e.g.Drosophila), despite
having mutation rate variation. For such species, mutation rate variation has in the past
been modeled as a discretized Γ distribution across sites. SFS CODE allows you to simulate
under such a model, allowing both sites as well as loci to have a mutation rate scaled by a
discretized Γ distribution (with mean 1). These are implemented in the following options.

--rateClassSites (-V) [P <pop>] <nclasses> <α> mutation
rate
variation
across sites

--rateClassLoci (-v) [L <locus> <rate>] [ [P <pop>] <nclasses> <α>]

mutation
rate
variation
across loci

These options allow you to specify a certain number of mutation rate classes (nclasses), which
will be drawn from a Γ(α, α) distribution (having mean 1 and variance 1/α). Note that when
modeling mutation rate variation across loci there are two routes to take. Instead of a Γ
distribution, you can specify the rate at each locus directly using the ‘L’ flag. Note that
here as well as in other places, the letter ‘A’ can be used for locus to give all loci the specified
rate. When specifying the rate at each locus explicitly, the default for each locus is to have
a rate proportional to the number of bases in that locus.

Important note: The mutation rate specified using -t (or the default rate if unspec-
ified) and the total sequence length will still determine the total number of mutations that
enter the population! The rates indicated using these options just determine the rate at
which they are assigned to a given site/locus. For example, consider the following command:

Ex. 17. ./sfs code 1 1 -t 0.001 -L 3 100000 1000 100000 -v L A 1 -v L 1 10

The average number of mutations introduced each generation would be θ
∑2

i=0 Li/2 =
100.5. Without the -v option, the fraction of mutations that fall onto locus 0 would be
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L0/
∑2

i=0 Li = 0.4975. With the -v option, the fraction of mutations that fall onto locus 0

is r0/
∑2

i=0 ri = 0.083. This option is useful when simulating recurrent hitchhiking models
or background selection (see example section below).

Adding a Mutation at a Predefined Time

In some studies, it is useful to be able to add a mutation at a predefined time (for example,
you may want to learn about the properties of a mutation that is a particular age). You can
do this in SFS CODE using the following option:

--mutation () <τ> [P <pop>] [L <locus>] [S <site>] [H <h>] [G <γ>] [Fadd a
mutation

ad a
defined

time

<file>]

Note that this option has no short name! By default, this option will introduce a
mutation at a random location in a randomly chosen locus in a random population that is
alive at the indicated time. However, if you have multiple populations, you can introduce
the mutation in a certain population; if you have multiple loci, specify a particular locus,
and also specify the exact site that will be mutated. Finally, the mutation will be assumed
codominant (h = 1.0) and neutral (γ = 0) unless you specify a dominance coefficient (using
H <h>) and selection coefficient (using G <γ>). This selection coefficient should be scaled by
the population size at the time the mutation even is introduced.

It is also possible to specify a conditional trajectory for this mutation using a
file (F <file>). The file should contain at least 2 columns. The first column should include
a time, and the second column should include a frequency. Additional columns will be
ignored. Note that the time column can either be discrete generation numbers (i.e., integers)
or population-scaled values (i.e., floats). Population-scaled values are assumed to be scaled
by 4Ne, similar to existing trajectory simulators. You do not need to specify which type of
file is included, as SFS CODEcan easily distinguish the two. Note that if discrete generations
are used, then it is assumed that the frequencies will be monotonically increasing, but if
population-scaled units are used, then the frequencies will be monotonic decreasing.

This option can be used many times to introduce several mutations. Most options in
SFS CODE, if repeated, will void previous declarations, but this is an exception. You can
introduce as many mutations as you want.

Important notes. 1) This option imposes a strict infinite sites assumption for the
sites specified with this option. Any site set to receive a mutation will NOT be included
with the usual mutation machinery that is used to introduce variation every generation. Of
course, if you want multiple mutations to arise at the same site, you can specify that by
repeating this option multiple times for the same site. 2) This option must be specified
AFTER using the --length (-L) option if you are using anything but the default settings
for the loci lengths.

This option works nicely with the --trackTrajectory option described on page 43, in
the sense that if you want simulations where a mutation is a particular age and frequency
at the time of sampling, tracking the trajectory can enable you to do this.
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Keep in mind that while you are restricted to entering a specific time for a mutation
event to occur, you can easily create a text file with random times you would like to consider
(drawn from whatever distribution you desire), and write a shell script to repeat the simu-
lations using each of the times listed in the file. For example, if you have a file times.txt

that has 1 column and 5 rows with just the times you want mutations to be entered, you
can use the following code at the command-line to generate the desired simulations:

for((i=1; $i<=5; i=\$i+1))

do

T=$(head -n $i times.txt | tail -n 1);

./sfs_code 1 1 --mutation $T -o out_$i.txt;

done

4.5 Recombination: Crossing-over and Gene Conversion

Crossing-over and gene conversion are two important evolutionary forces that occur during
meiosis. For the discussion that follows, I will focus explicitly on diploids, and assume that
the process is analogous for tetraploids conditional on choosing the two parental chromosomes
that will contribute to the inherited chromosome.

SFS CODE has been written to handle cross-overs and gene conversion in way that
approximates the biological mechanism to the best of my ability (while maintaining a simple
model). Crossing over was introduced above on page 7. Using -r <ρ> alone results in
a simple crossing-over model of recombination. One can add gene conversion using the
following template:

--geneConversion (-H) [P <pop>] [B <BGC>] <f> <λ> gene
conversion

Here <f> denotes the relative rate of crossing-over (if r is the cross-over rate per generation,
and g is the gene conversion rate per generation, then f = r/(g + r)). For example, f = 0.5
implies that crossing-over will occur during half of the recombination events. As outlined
in figure 4, a section of DNA is excised from each strand in opposite directions from the
double stranded break. The lengths of DNA excised are modeled as independent draws from
a Geometric distribution with mean <λ> (i.e., the total tract length has mean 2λ, which
is not geometrically distributed). By default, gene conversion does not assume any base
composition biases. However, it has been hypothesized that the biological process may be
biased toward the repair of G and C nucleotides when present in a heterozygous state with an
A or T nucleotide. To allow for such a bias, you can enter B <BGC> before the f parameter
to specify the degree of GC bias from 0 to 1, with 1 implying that GC alleles are always
favored over AT alleles, 0 implying that AT alleles are always favored over GC alleles (not
biologically realistic), and 0.5 (the default) implying that there is no bias. The parameters
can be specified for a specific population using the now familiar P <pop> flag (which if used
should be the first argument).

Note that one can simulate gene conversion without recombination by simply not spec-
ifying a recombination rate, or setting the recombination rate to 0 (e.g., -r 0, which is the
default, hence, not necessary). In this case, the value of f is interpreted as the population
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scaled gene conversion rate per site f = 4Ng, which is completely analogous to the popu-
lation scaled cross-over and mutation rates. Each generation, fL/2 gene conversion events
would take place, where L is the total sequence length simulated.

In the case of crossing-over alone (non-zero recombination rate, ρ, with no gene con-
version), a Poisson number of recombination events will be distributed with mean ρL/2 (as
is usually the case, described previously). In the case of gene conversion with crossing-over,
the value of ρ entered in the -r option specifies the total recombination rate (gene conversion
plus crossing-over), so each generation the number of recombination events will be Poisson
distributed with mean ρL/2. ρ can be thought of as the rate at which chromosomes that
receive double stranded breaks are passed on. This model follows the diagram shown in
figure 4, where 3 of the 4 chromosomes produced during meiosis do not involve any gene
conversion at all (except in the case of BGC). Note that while the biologically sensible pa-
rameter space for f is between 0 and 1, you can specify f > 1 to allow crossing-over to occur
more frequently than gene conversion. While this is not biologically realistic, other programs
(such as ms) allow it. In such cases, f = r/g.

After drawing the total number of recombination events (both crossovers and gene
conversion), they are distributed amongst the N offspring individuals uniformly. However,
whether the recombinant chromosomes are inherited from the maternal or paternal line
can be specified using the --pMaleRec (-Y) option described on page 8. Each offspring
chromosome receiving at least one event will randomly choose a site for the event to occur
(either uniformly or according to the recombination map supplied using the -r F <file>

<ρ> flag). Gene conversion always takes place 5’ of the site selected, and crossovers always
occur immediately 3’ of the selected site.

For simulations with biased gene conversion, heterozygous AT→GC mutations in the
conversion tract (purple in figure 4) will be copied with probability BGC (this represents a
biased repair in favor of the GC allele, which is the derived state). Heterozygous GC→AT
mutations in the conversion tract will NOT be copied with probability BGC (again, repre-
senting a biased repair in favor of the GC allele, which happens to be the ancestral state).
For other types of mutations that are heterozygous in the conversion tract, only those carried
by the donor chromosome (blue in the figure) will be copied.

An important note regarding gene conversion: The locations of breakpoints and the
conversion tract lengths are chosen independently. If the conversion tract extends beyond the
beginning of the simulated locus, it will continue onto the previous locus (if the distance to
the previous locus is specified in physical units and the tract is long enough). If there are no
loci before the chosen break point or the distance is specified in genetic distance, conversion
will stop at the beginning of the locus. Gene conversion will not extend beyond a single
adjacent locus. For example, if you simulate 10 loci each 50 bases long, then the maximal
tract length will be 100 bases. (If there is a situation in which this is not sufficient, please
notify me at the email address above.) Together, these assumptions effectively reduce the
mean length of gene conversion tracts in small simulated regions. It is easy to approximate
the effective reduction by calculating the mean length of the tract that falls outside the
locus. For this calculation, assume that the gene conversion tract length is a single draw
from a geometric distribution with mean λ. Letting L be the length of the locus, G(i|λ) be
the geometric probability of drawing a tract length i given a mean length λ, the mean tract
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length outside the locus is approximately

L∑
i=1

iP (i) (1)

where P (i) is the probability of i bases falling outside the locus, which is approximately

P (i) ≈ G(i+ 1|λ) + · · ·+G(i+ L|λ)

L
.

Expanding the sum in equation 1 and collecting terms results in the following simpler equa-
tion

L∑
i=1

(
i

2

)
G(i|λ). (2)

For the case of a 5000 base locus with mean tract length 250 bases, the effective reduction
is 12.4 bases. This was confirmed by 1.5 million simulations, which yielded a mean resulting
tract length of 237.05, the distribution of which is geometric (more specifically, a censored
geometric; MWU p-value = 0.8836). This information is only useful for comparing SFS CODE

to other simulation programs which first draw the length of the gene conversion tract then
draw a starting position conditional on fitting that length (or in the case of an infinite sites
simulator, where the tract length always fits within the simulated locus). For a proper
comparison, one would need to reduce the tract length in the other programs by the amount
in equation 2. Because it is necessary to allow gene conversion events to overlap multiple
loci, such conditioning is impractical in SFS CODE.

Note that because gene conversion and cross-overs are generated simultaneously (as
compared to the coalescent simulator ms (Hudson, 2002) and other programs that simu-
late them independently), the parameters used in SFS CODE will be different. For example,
to compare SFS CODE to ms with crossing-over and gene conversion, one needs to use the
following key. For fsfscode ≤ 1:

ρms = ρsfscodefsfscode

fms =
1− fsfscode
fsfscode

For fsfscode > 1:

ρms = ρsfscodefsfscode

fms =
1

fsfscode

Of course since the gene conversion tract lengths in ms and SFS CODE are not drawn the
same way, the resulting distributions will not be the same, but see the Comparisons and
Expectations tab on the project website (http://sfscode.sourceforge.net) for a direct
comparison of the two programs.
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1. Individual starts with 2 chromosomes (one from each parent, each with 2 strands).

2. First stage of meiosis is interphase, in which chromosomes replicate, joined at the 
centromere as sister chromatids.  There are now 2 copies of each homologous 
chromosome, each with 2 strands, for a total of 8 strands of DNA.

3. The second stage of meiosis is prophase I.  The sister chromatids come together to 
form tetrad in the middle of the cell. During this stage, double stranded breaks can 
be repaired via recombination.

DSB!

5. A section of DNA is excised around the DSB on both strands. The length of each 
excision is independently drawn from a geometric distribution (mean λ).

6. First end invasion.

7. Second end invasion.

8.
DNA synthesis (dashed lines).  We now have a Holiday Junction.  There are 4 
possible ways to resolve this (by cutting 2 of the 4 strands on each side:  12 or 21 
on the left and 12 or 21 on the right).  

1
2
1
2

10.
Meiosis yields 4 haploid cells.  In the simulation, we only need to generate 1 outcome.  If the simulated event was GC 
only, pass on 9.1 or 9.4 (w/p=0.5).  If the event was GC+CO, pass on 9.2 or 9.3 (w/p=0.5).  Note that DSB always 
arises on the chromosome being inherited (red 5’ end).  Correct heteroduplex mismatches (shown in purple) with GC-
bias, or maintain unbroken strand (blue; i.e., with no BGC, always use blue strand).

4.
We will now focus on the region surrounding the DSB (highlighted in step 3).  
Assuming DSB corrected using homologous chromosome (sister chromatid would 
yield an identical match and leave no evolutionary trace).

Cutting strands 21 on the 
left and 21 on the right:

4

1

2

2
1

Cutting strands 21 on the 
left and 12 on the right:

3

1

2

2
1

Cutting strands 12 on the 
left and 21 on the right:

2

1

2

2
1

9. Cutting strands 12 on the 
left and 12 on the right:

Holiday junction showing 
strands to be cut during 
resolution

Reconnecting strands 
after resolving Holiday 
junction.

A single resulting strand 
is shown.  Synthesized 
DNA identically matches 
blue strand.  Potential 
heteroduplex mismatches 
are shown in purple. 1

1

2

2
1

Figure 4: The simulated process of recombination (crossovers and gene conversion). Purple seg-
ments are the “conversion tracts” where heteroduplex mismatches may occur, which are repaired
toward the blue chromosome (i.e., the unbroken strand) if there is no GC-bias. If there is GC-biased
gene conversion, then AT↔GC mutations are repaired toward the GC allele with probability BGC .
Note that f = 0.5 would result in choosing among 9.1-9.4 equally likely, while f = 1 exclusively
chooses either 9.2 or 9.3, and f = 0 exclusively chooses either 9.1 or 9.4.
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4.5.1 Recombination Hotspots

In the current version, recombination hotspots are allowed through the use of the -r F

<file> <ρ> option described on page 7 (but this option is not available on the CBSU
web cluster). This option allows you to enter the name of a file that contains the explicit
parameters of your hotspot model. A basic model might correspond to a simulation of a
5kb sequence with a single 200bp hotspot in the middle that has a relative intensity 10-fold
higher than the background rate. The file would include the following lines.

3

2400 0.353

2600 0.647

5000 1.0

There are 3 sequence intervals: 0-2399, 2400-2599, and 2600-4999, having recombination
probabilities 0.353, 0.294, and 0.353 (respectively). These probabilities correspond to a 10-
fold larger rate for the middle 200 bases (i.e., 0.294/200 = 10 × 0.353/2400). Using this
model, the recombination map can be arbitrarily complex. It is important to note that
the default operation of SFS CODE is to simulate coding regions, thereby rounding the input
number of bases in a locus to the nearest whole codon. If you want to disable this, you
must use the flag -a N as described on page 10. Note that you can alter the recombination
rate later in the command-line using another invocation of the -r [P <pop>] <ρ> option,
such that different populations can have different rates of recombination. One also needs to
specify the overall recombination rate as normal, since the only thing that this recombination
map affects is the place where recombination events occur, not the distribution of the number
of events.

4.6 Insertions and Deletions

SFS CODE also allows you to simulate insertions and deletions (indels) from two different
length distributions (i.e., allowing shorter and longer indels). The model for such events
is rather crude. They are treated just like mutation events, but can only occur in regions
that have been annotated as non-coding (this requires the use of the –annotate (-a) option
described on page 10), and will be given the same distribution of selective effects as muta-
tions within the locus that they arose in. Insertions are inserted and deletions are deleted
independently of one another, with each event affecting a number of nucleotides that are
drawn from either a geometric distribution or poisson distribution (specified by the user).
The command for implementing indels using a geometric length distribution is as follows:

--indel (-u) [P <pop>] <INSrate> <DELrate> <mean length> indels

The command for implementing indels using a poisson length distribution is as follows:

--longIndel (-U) [P <pop>] <INSrate> <DELrate> <mean length> longIndels

Where in both cases INSrate and DELrate specify the insertion and deletion rate (respectively),
and mean length is the mean length of an event (assumed to the the same for both insertions
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and deletions). The rates for insertions and deletions should be thought of as analogous as θ
for mutations. Each generation a Poisson number of insertions and deletions will be drawn
with mean 1/2 the specified rate times the total sequence length.

Because a geometric distribution has a mode at 1, it is best used for simulating short
indels (such as a mean of length 3). The poisson distribution, on the other hand, is roughly
symmetric about the mean (for large values, a normal approximation suffices). This poisson
distribution is more useful for modeling indels that arise due to ALUs and LINEs. See section
8.2 for a description of how the output file reports indels.

4.7 Inversions

SFS CODE allows you to simulate inversions with a length distribution given by a poisson
model. Like indels, the model for inversions is rather crude. They are treated just like
mutation events, but can only occur in regions that have been annotated as non-coding
(this requires the use of the --annotate (-a) option described on page 10), and will be
given the same distribution of selective effects as mutations within the locus that they arose
in. Inversions swap the order of a stretch of nucleotides with a length drawn from poisson
distribution. The command for implementing inversions is as follows:

--inversions (-z) [P <pop>] <INVrate> <mean length>inversions

Where INVrate specifies the inversion rate and mean length specifies the mean length of
an event (respectively). The rate of inversions should be thought of as analogous to θ for
mutations. Each generation a Poisson number of inversions will be drawn with mean 1/2
the specified rate times the total sequence length. See section 8.2 for a description of how
the output file reports indels.

4.8 Selfing and Generation-Effects

SFS CODE generally assumes that all populations are randomly mating (subject to their
relative fitnesses). However, in plant species in particular, mating is not random, such that
an individual may be more likely to self-fertilize than to mate with another (an ultimate
form of inbreeding). To accommodate this, SFS CODE allows the user to specify a selfing
rate, s, for each population using the following option.

--self (-i) [P <pop>] <s>selfing rate

For a population with selfing rate s, sN individuals in the each generation will be
produced by selfing, while the remainder will be produced by randomly selecting two parents
(who may end up being the same by chance).

Moreover, when simulating multiple species, it will not always be the case that they
will have the same generation time. For example, today, humans have a longer generation
time than most other primates (especially the non-apes). To account for this, SFS CODE

provides a generation effect option.
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--GenEffect (-G) <pop> <G> generation
effects

For the generation effect, G must be an integer (≥ 1 or ≤ −2). If it is positive, then the
indicated population will experience G rounds of mating each generation. If G is negative,
then the indicated population will only have a round of mating every |G| generations. For
example, setting G=2 would shrink the generation time by half (leading to 2 rounds of random
mating every generation), while setting G=-2 would double the generation time (leading to
one round of random mating every second generation). At least one population must have
G=1.

4.9 Changing Parameters Over Time

In SFS CODE, many of the parameters can be changed at any time during the course of
the simulation. Table 6 outlines all the options that have been implemented in SFS CODE,
and any option that has an asterisk in the short name (third column) can be changed (or
initiated) at any time using the following option.

-T<short name> <τ> [args] timed
events

This means that if you are, for example, studying domesticated rice, and want to model the
transformation to a primarily selfing organism, you might consider a population which starts
with a low selfing rate, but 2N generations ago became 99% selfing. This could be achieved
as follows.

Ex. 18. ./sfs code 1 1 -TE 1 -i 0.2 -Ti 0 0.99

Example 18 would simulate data assuming the selfing rate was 0.2 until the burn-in
time ended, at which point the selfing rate would change to 99%. The simulation would then
end after another 2N generations.

When using -T*, the option retains all the functionality as described above and in
Table 6. For example, consider simulating 2 populations, that diverged 10×2N generations
ago (i.e. human-chimp divergence). Suppose you wanted to model recent positive selection
(e.g.within the last 2N generations) in the human genome while ancestral populations and
chimpanzee are completely neutral. You might try the following example.

Ex. 19. ./sfs code 2 1 -TS 0 0 1 -TE 10 -TW 9 P 0 1 5 1 0

Example 19 would generate 2 populations, which split at time τ = 0, and evolve in-
dependently for 10×2N generations (-TE 10). However after having diverged for 9×2N
generations, all new nonsynonymous mutations in population 0 would be advantageous with
γ = 5. In this case, the command “-TW 9 P 0 1 5 1 0” literally means change the distri-
bution of selective effects at time τ = 9 for population 0 to type=1, γ=5, p pos=1, and
p neg=0.

Keep in mind that timed events only work with the short names, so you could not use
-TselDistType, for example.
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5 The Simulated Population Size Usually Does Not Matter

One challenge you will face when running forward simulations, is to pick an effective pop-
ulation size. In coalescent theory, this is a non-issue, as the results have been derived for
limiting cases when the population size tends to infinity while parameters tend to zero, such
that the product stays constant (isn’t it nice that all parameters in population genetics are
scaled by the population size?). However, in forward simulations, the actual population size
used can become an issue, depending on what you are trying to model. Specifically, recur-
rent hitchhiking (with strong selection) and background selection (with a large deleterious
mutation rate) can be dependent on the simulated population size you choose.

However, in most situations, the actual population size doesn’t matter. In general,
you should do a few simulations with larger and smaller population sizes to show that the
population size used does not affect your simulations. Failing to do so could lead to a false
interpretation of the results (particularly when there is rampant selection, see Uricchio and
Hernandez (2014)). However, it is always helpful to use the smallest population size possible,
as this will make the simulations run quicker.

We will consider varying the effective population size. This is done using the
following option.

--popSize (-N) [P <pop>] <size>

We will consider populations of size N ∈ {250, 500, 1000, 5000, 10000}. This should give us
an idea of what is going on. We will consider just a couple of statistics: the distribution of
the total number of polymorphisms and the average site-frequency spectrum (SFS). We will
evaluate populations of constant size, as well as populations that have recently either grown
or shrunk 10-fold (magnitude of change ν = 10 or 0.1, approximately 0.1× 2N generations
ago). We will also consider neutral models as well as selection under both selDistType 1
and 2 (-W 1 5 0.1 0.8 and -W 2 0.1 50 10 0.23 0.1279, respectively). Considering just
the case of no recombination yields 45 combinations (5 population sizes × 3 demographic
models × 3 selective effects). The general command line looks like the following example
(note that we are sampling 20 diploid individuals, or 40 chromosomes).

Ex. 20. $ ./sfs code 1 2000 -n 20 -N <N> -Td 0 <ν> -TE <τ> -W <type> [args]

Figure 5 summarizes the results. As you can see, for these demographic and selec-
tive effects, the effective population size used has no impact on the distribution
of SNPs or the SFS. For the cases shown here, the only reason the curves do not per-
fectly overlap is because 2000 simulations is insufficient to capture the true distribution. A
very similar figure was generated (but not shown) with recombination (ρ = 0.01/site) with
identical results.

In addition to recurrent hitchhiking and background selection simulations, exponential
growth in a small population size may not work well. In a small population, the time over
which exponential growth takes place may not allow enough generations to have an accurate
relative population size at the end of the simulation. Imagine a smooth exponential curve.
With a small simulated population size, you are approximating that smooth curve with
potentially very few points, thereby altering the dynamics.
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Figure 5: The non-effect of the effective population size in SFS CODE. Each panel has 5 curves,
corresponding to different values of Ne (shown in legend in the upper-right plot). Each row cor-
responds to a different set of assumptions (demography/selection). Left is the distribution of the
number of segregating sites, and the right is the average SFS across 2000 simulations.
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6 Sampling From an Extinct Lineage

Recent advances in the extraction of ancient DNA has lead to the partial sequencing of the
Neanderthal genome. This allows us to gain further insight into homo relatives, and actually
learn more about our own species. One of the many questions that gains a lot of interest
is whether or not humans mated with Neanderthals, and whether there is any evidence for
or against it in our genomes. Understanding whether or not current statistical methods will
have the power to detect evidence of such mating (or how much migration there would have
had to have been to detect it) lies crucially in the hands of population genetic simulations.

Assuming that you’ve been able to simulate more than one population, sampling from
an extinct lineage is actually dead easy (pun completely intended). You must simply “kill”
one of the populations using the option -TE <tau> [pop]. Take the following example.

Ex. 21. $ ./sfs code 2 1 -TS 0 0 1 -TE 0.1 0 -TE 0.5

During the burn-in, a single population would reach stationarity. At the end of the
burn-in, the populations would allopatrically split (-TS 0 0 1). After 0.1×2N generations,
population 0 would effectively die (simulations for this population would stop). All the
individuals from this population are still in memory, but evolution in this population ceases
(all individuals would, quite literally, remain frozen in their prehistoric state). After an
additional 0.4 × 2N generations, the simulation completes. At completion, the default of 6
individuals will be sampled from the extinct lineage (population 0) and 6 individuals will be
sampled from the other population (you could consider this the human population).

For a slightly more detailed simulation, consider the human-Neanderthal-chimpanzee
alignment, where only a single individual is chosen from each species. This could be imple-
mented as follows.

Ex. 22. $ ./sfs code 3 1 -TS 0 0 1 -TS 8 1 2 -TE 9 2 -TE 10 -n 1

Step-by-step, this would perform a single simulation of 3 populations (./sfs code 3 1).
At the end of the burn-in, the ancestral population splits into two populations (e.g.the chimp
and human-Neanderthal ancestor: -TS 0 0 1). After 8× 2N generations, humans and Ne-
anderthals split (-TS 8 1 2). After another 2N generations, the Neanderthal population
suddenly goes extinct (-TE 9 2). Finally, after a total of 10×2N generations, the simulation
ends, so we sample 1 individual from each species (including the extinct one).

Rather than have the Neanderthal population suddenly go extinct, it might be more
useful to have them die out at an exponential rate, or something. Just as in section 4.1, we
could add a growth (or death) rate of population 2 to -2 at time τ = 8.5 using -Tg 8.5 P 2 -2.

After simulating data, one could use convertSFS CODE to analyze patterns of shared
haplotypes, patterns of ancestral and derived alleles, etc. One could also consider humans
and Neanderthals to be two populations with very high rates of migration, but negative
selection acting strongly on the Neanderthal population until they are “bred out”.

36



7 Using SFS CODE on a Cluster

7.1 Your own Cluster

Any large scale simulation study cannot be performed without a large number of processors.
Even coalescent simulations require a cluster in some situations, such as when using approx-
imate likelihood techniques [e.g.Hernandez et al. (2007a); Caicedo et al. (2007)]. However,
if you do not have access to a cluster, or are unfamiliar with how to run jobs on a cluster,
then this section will be insufficient for you (try the next section, which deals with using the
CBSU web cluster at Cornell University).

Being a forward simulation, SFS CODE works well when identical jobs are sent to multi-
ple processors, as they are all run independently. However, because the burn-in period takes
a considerable amount of time, it is often beneficial to run several iterations on each proces-
sor (to take advantage of the short successive draws after the burn-in, as shown in figure 1).
It therefore becomes a balance between the number of iterations to run on each processor
versus the number of processors at your disposal to provide the most efficient results.

Let’s consider the case where you want to run 2000 iterations of a single simulation,
and you have access to 10 processors. The simplest way to complete the task is to split it
up into 10 different jobs, each of which runs 200 iterations. Each of the 10 jobs can then be
submitted to a different processor and run simultaneously. Of course the output from each
processor has to be written to a different file (using -o option), since different processors
cannot write to the same file simultaneously. When all the processors are done and have
written their output, you would then need to concatenate all 10 output files into a single file
for analysis.

Included in the distribution are two files: makeTask.pl and runTask.sh which will be
found in the Examples/ directory. makeTask.pl is a perl script that can be used to partition
your simulations into a set of independent tasks. There are comments in the file itself that
should help you to get this file configured for your particular simulation. Basically, you need
to add parameters that are constant across all the simulations you want to run in a way that
is similar to “$THETA”, and put the parameters you want to vary in an array like @RHO. When
you run the script at the command line using perl makeTask.pl, it will create a numeric
folder for each set of parameters that you entered. runTask.sh is a shell script that can
be used on a cluster running the Sun Grid Engine. This file must be submitted from the
directory that you want your output to be printed to. It will produce a number files that
equals the number of tasks in the tasklist file created by makeTask.pl.

Setting the Seed

When running simulations on several processors simultaneously, there is a very nontrivial
probability that some jobs will start at the same time. These jobs would then have the same
seed for the random number generator, and would therefore produce exactly the same results.
This is very bad, every simulation must have a different seed. For any given simulation, you
can change the seed using the following option.

--seed (-s) <value> random
number
seed
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Depending on the configuration of your cluster, you can generate a TASKFILE with several
lines, each line containing the entire SFS CODE command, but with a unique seed (as described
in the previous section). In the latter situation, you could use another program (written using
MPI) to dynamically distribute each of the tasks across the available processors (not provided,
but these so called “master-slave” algorithms are commonly used and can be downloaded
from other sources), or use the simple array job shell script runTask.sh described in the
previous section.

Setting the seed is also useful if you ever want to reproduce a set of simulation results
exactly.

7.2 Using SFS CODE on the CBSU Web Cluster

*** Unfortunately, this option is only available to current employees at Cornell. ***

SFS CODE has a dedicated webpage at http://cbsuapps.tc.cornell.edu/sfscode.

aspx. From here, it is possible to submit your simulation jobs to the cluster hosted by
the Cornell University Computation Biology Service Unit (CBSU). The interface is simple.
Enter your email address (to have a link with simulation results emailed to you), and a single
set of SFS CODE arguments. All you have to do is indicate the total number of populations
you want to simulate (Npop), the total number of successive simulations that you would like
to run on each process (Niter), the total number of repetitions you want to run (Nrep), and
the total number of nodes you want to use. Then, copy-paste your command-line arguments
into the text box. A total of Nrep×Niter simulations will be run automatically, each with a
different seed. You can only paste a single line into the text box. Running several different
sets of simulations requires submitting several jobs.

The command will then be distributed across the requested number of processors.
Upon completion, output will be concatenated into a single file, zipped, and stored on a
server until downloaded (a link to the location will be emailed to you). Depending on the
number of jobs in the queue, your job may take up to a few days to begin.

The CBSU web clusters have a 24 hour time limit. This means that any job that you
submit to the cluster must be completed within 24 hours. It is good practice to become
familiar with the length of time that your job will take by running a few iterations locally
(also helpful to ensure that your command-line works). You could then multiply the average
amount of time per job by the total number of tasks you wish to perform and divide by the
total number of processors. If this is greater than 24 hours, consider splitting the job into
two or more sets.

8 Understanding the Output

A lot of information is stored during the course of an SFS CODE simulation that will be useful
in many different situations (yet useless in others). Unfortunately, this makes for a lot of
output. In order to make the output file as concise as possible, a fairly complicated format
is needed. However, I’ve also produced convertSFS CODE, a program that will convert the
SFS CODE output to a more useful format (see next section). However, it is important to
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know all of the information that is contained in the output in the event you want to perform
a type of analysis that has not yet been implemented in convertSFS CODE.

8.1 No indels or inversions

An example of the output when not simulating indels or inversions looks something like the
following:

./sfs_code 1 2 -L 2 66

SEED = -382034166

//iteration:1/2

>locus_0

GTTCCAGGAAGCTGGACAGTCTCTTATGGCGACATGGTAAATAAATTTGCGGTCCTGAAATCGGGT

>locus_1

AATGGGTTAGATTATGATTATGTGCATCGTCTTTACACGAGTGGAGTCATTCGACTTTTCGTACTA

Nc:500;

MALES:3;

0,A,24,-237,0,TTA,A,1,Y,N,0.0,2,0.1,0.8;

//iteration:2/2

>locus_0

TTTTCAGTCTGTTTTGTCAAAGATTATTCTTTTGGGCTCCTCACGCACCTTAAGAAGTGTATATAC

>locus_1

TACGCTATCAACTACAATATACATAGTGTGGTTTTCGATGGCCTTAGGTCAGTTGACCTACGTAAC

Nc:500;

MALES:3;

1,A,28,-523,0,GTG,A,1,V,E,0.0,2,0.1,0.3;

The first line has the command line used to call SFS CODE. In this case I’ve asked
SFS CODE to generate two iterations of a single population, with two loci, each of length 66
basepairs. The second line includes the value of the seed for the random number generator
(this can be used to reproduce the results, though the version used to generate this output
may be different from the one you are using so you may not be able to reproduce this
output exactly). The third line starts the results of the simulations. Each iteration that
is simulated starts with “//iteration:”, followed by the iteration number and the total
number of iterations being performed. The fourth line starts a fasta-style representation of
the nucleotide sequences at each locus. The next line reports the final population size (Nc)
of each population in a comma delimited list terminated with a semi-colon. The next line
(“MALES:”) provides the index for the first male that was sampled (not the number of males
in the sample), in this case indicating that individuals 3, 4, and 5 are male while individuals
0, 1, and 2 are female (note that these are diploid individuals, so chromosomes 0-5 belong
to females and chromosomes 6-11 belong to males). The next line starts the information
regarding every mutation that contributes information to the sampled sequences in a comma
delimited list terminated with a semi-colon. There are at most 20 mutations per line, so the
list of mutations can span several lines. The information provided for each mutation are as
follows:
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1. locus that the mutation arose on (zero-based)

2. ‘A’, ’X’, ’Y’, indicating Autosomal, X-, or Y-linked mutation, respectively

3. position of mutation in locus (zero based)

4. generation mutation arose (negative for mutations arising during burn-in)

5. generation mutation fixed in population (or time of sampling if segregating)

6. ancestral trinucleotide (middle nucleotide mutated, NOT CODON)

7. derived nucleotide

8. 0 or 1 for synonymous or nonsynonymous (respectively; 0 for non-coding)

9. ancestral amino acid (single character representation; ‘X’ for non-coding)

10. derived amino acid (single character; ‘X’ for non-coding)

11. fitness effect (this is s, NOT γ = PNs)

12. number of chromosomes (n) that carry the mutation

13-. . . comma delimited list of the n chromosomes carrying mutation

Each mutation event is terminated with a semi-colon. The list of chromosomes carrying each
mutation is reported as a decimal: p.c, where p is the population number (zero based) and
c represents the chromosome number in that population (also zero based). Take the muta-
tion event reported in the first iteration: “0,A,24,-237,0,TTA,A,1,Y,N,0.0,2,0.1,0.8;”.
This indicates that it occurred at the first locus (zero), which is autosomal, at position 24.
This mutation arose 237 generations before sampling (i.e. 237 generations before the burn-in
period ended), and was segregating at time of sampling (sampled at time 0). This mutation
was a nonsynonymous mutation having no fitness effect, and was carried by two chromosomes
(1 and 8) in population zero (the only population simulated).

Mutations that fix in the population during the burn-in period are not recorded by
default. To report mutations that went to fixation during the burn-in, use the following
option

--ReportBurnFixed (-R)report
mutations

fixed in
burn-in

If you are running a simulation, and you aren’t sure whether the program is totally
stuck or just taking a long time, you can print a note every generation to watch the status.
This is like a ghetto status bar. There is no short name for this option.

--printGenprint
generations

Generally speaking, if you want to track fixations while simulating a single population,
use the -TE option (those that fix during the burn-in are generally unreliable, but some-
times necessary if you enter a reference sequence using -a F <file> and want to track all
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changes). Mutations that are fixed in the sample from population p will be reported as p.-1.
It is possible to distinguish mutations that are fixed in the sample but segregating in the
population using the 4th entry (the generation it supposedly fixed). If it “fixed” at the end
of the simulation, then the fixation time will be the same as segregating polymorphisms.
This can only happen if it was still segregating in the population (as random mating would
not yet have occurred).

It is generally encouraged to retain the ancestral sequence (just in case you want to
go back and re-analyze some previous simulations and need the actual sequences; e.g.to
setup the observed [using parsimony as compared to the true] McDonald-Kreitman tables).
However, they can take up a lot of space in the output, so you can exclude ancestral sequences
using the following option.

--noSeq (-A) removing
ancestral
sequence
from
output

By default, output will be printed to the screen. If you would rather it be written to
a file, you can use the following option.

--outfile (-o) [a] <file> sending
output to a
file

The optional character ‘a’ would allow you to append to a file rather than overwriting it.
When multiple iterations are run, and output is being directed to a file, the progress of the
simulation will be printed to the error file. By default, the error file is the screen, but this
can be changed using the following option

--errfile (-e) [a] <file> sending
error
messages
to a fileThis is also useful for keeping track of any error messages that arise (such as when figuring

out what might have gone wrong with a set of command line arguments).

It is important to note that when simulating multiple populations, if a single muta-
tion fixed independently in multiple populations at different times (due to the mutation
arising in the ancestral population or migrating into another population), it will be listed
multiple times in the output. This allows you to analyze the dynamics of ancestral poly-
morphisms in the face of differential demographic forces in daughter populations, but also
adds a complication to the output file. As a result, some of the functions implemented in
convertSFS CODE(described below) may not function properly.

If many loci are being simulated, but you only care about a subset of loci, you can
restrict the output to those loci using:

--printLocus <locus> print
individual
loci

Note that this option can be repeated an arbitrary number of times to print out any number
of loci.
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8.2 With Indels and/or Inversions

When simulating indels and/or inversions, more information is required. Namely, we must
specify the type of event, the number of bases involved, and the new DNA (if inserted). This
is accommodated by allowing entry 8 to take on the value ‘i’ if the event was an insertion, ‘d’
if the event was a deletion, and ‘v’ if the event was an inversion. Entry 9 now has the number
of bases involved in the event (no longer the ancestral amino acid, since there was no such
thing). If the event was an insertion, entry 10 now has the new nucleotides, OTHERWISE
THERE IS NO ENTRY 10. In the case of a deletion or inversion, entry 10 corresponds to
the fitness effect, entry 11 corresponds to the number of chromosomes in the sample that
carry the event, and entries 12 and on represent the comma delimited list of chromosomes
carrying the event.

For an insertion, the new DNA is placed immediately after the base indicated in the
third entry. Likewise, in the case of a deletion, the DNA deleted starts after the base
indicated in entry 3. For example, for a deletion with the third entry having a value of ‘0’,
an eighth entry of ‘d’ and a ninth entry of ‘2’, then the second and third bases in the
sequence would be deleted.

The other minor change to the output is the ancestral and derived nucleotides. They
are pretty much useless for any of the three events. For insertions, the ancestral allele is a ‘-’
while the derived nucleotide is a ‘+’. The opposite for deletions. For inversions, the ancestral
nucleotide is ‘f’ and the derived allele is a ‘r’ (indicating forward and reverse). The flanking
nucleotides represent the flanking nucleotides at the time of the event at the site indicated.
Take the following as an example:

./sfs_code 1 1 -L 1 50 -t 0 -n 1 -z .01 10 -a N -u .01 .01 5

SEED = -636193008

//iteration:1/1

>locus_0

CGTCATTGCTCACTACAGTCGCCTGCAAAGCTCGCGGTATGAACCTCTGA

Nc:500;

MALES:0;

0,A,2,-1687,0,G+C,-,d,1,0.0,1,0.0;

0,A,5,-714,0,CfC,r,v,5,0.0,1,0.0;

0,A,20,-1541,0,C-T,+,i,2,AA,0.0,1,0.0;

There are 3 events, one deletion, one inversion and one insertion. All events are carried
by chromosome 0.0, and none are carried by chromosome 0.1. Using convertSFS CODE

(described in section 9) to generate the alignment of the two sampled chromosomes would
produce the following sequences:

>it0pop0ind0locus0

CGTATCTCGTACTACAGTCGAACCTGCAAAGCTCGCGGTATGAACCTCTGA

>it0pop0ind1locus0

CGTCATTGCTCACTACAGTCGCCTGCAAAGCTCGCGGTATGAACCTCTGA
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Looking at the events in order, the first event is a deletion indicating that chromosome
0.0 should be missing the fourth nucleotide (remember, positions start counting at 0, and
the base following the indicated position is deleted). This corresponds to the nucleotide
’C’, which is missing in chromosome 0.0. The second event was an inversion starting after
position 5 and incorporating 5 nucleotides. Counting the characters in the second haplotype,
we see that the nucleotides TGCTC should be involved in the inversion, and we therefore find
the nucleotides CTCGT in positions 5-9 in the first haplotype. The third event is an insertion
at position 20. Note that this position refers to the position in the ancestral sequence. As
such, the second haplotype (which carries no events) has the nucleotides CGCC while the
first haplotype has the nucleotides CGAACC (notice the addition of 2 ‘A’ nucleotides, as was
reported in the tenth entry of the original output.

8.3 Population-wide Allele Frequencies

In SFS CODE, one often obtains a small sample of individuals from a larger pool of chromo-
somes that form the underlying population. Sometimes it is of interest to know the actual
allele frequencies of each mutation not only within the sample, but also within the population
as a whole. This can be done using the following option.

--popFreq (-F) [a] <file> population
frequencies

This will print (or [a]ppend) to the file each mutation on a separate line. Each line
will contain: the locus carrying the mutation, the site of the mutation within the locus,
the generation the mutation arose, and the type of mutation (‘s’ubstitution, ‘i’nsertion,
‘d’eletion, or in‘v’ersion) followed by the ancestral and derived alleles (respectively). This
will be followed by a tab delimited list containing the frequency of the mutation in the sample
from population 0, the frequency in all of population 0, the frequency in the sample from
population 1, the frequency in all of population 1, etc. This information can be combined
with the information in the general output file from SFS CODE to access most necessary
information.

This file will also include mutations that are segregating in the population but were
not contained in the sample. This is useful for understanding the effect of sample size on
SNP discovery.

It is important to note that this option is not implemented on the version that is
running on the CBSU web cluster (see section 7.2).

8.4 Tracking the Trajectory of an Allele

SFS CODE allows the user to output a file with the trajectory of the frequency of all (or some)
mutations each generation of their existence. You can initiate this option using the following
command:

--trackTrajectory [T <τ> [P <pop>] [L <locus>] [S <site>] [R <min freq> track
frequency
trajectory

<max freq>] [A [G <gens>]] [M <max reps>] [F [a] <file>]
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This option is extremely flexible, and the details are important to explain, because this is
among the most complex options available in SFS CODE. First, all options are optional, and
therefore all of them require a special flag to signify which option you are entering. ORDER
IS IMPORTANT. You cannot swap flags, otherwise the command will not be processed
properly. The first flag, T, indicates whether you want to start tracking the trajectory at a
specific time (as always, scaled by 2N generations). By default, all mutations are tracked
from the beginning of the simulation (i.e., during the burn-in). Second is a population flag,
P. By default, all populations are tracked, but you can track just a single population. Next
is a locus flag, L. By default, all loci are tracked, but you can track just the mutations in
a single locus. Next is a site flag, S. By default all sites are tracked, but you can specify
a single site. Note that if there are multiple loci, and you do not use the L flag, then the
indicated site will be tracked in all loci. Next, you can specify a desired final population-wide
allele frequency range with R. If you want to generate simulations where at least one site
ends up in a narrow frequency range, you can use this option. For example, if you want
an allele to be at 1% frequency (±0.1%), you would use R 0.009 0.011. Next is a flag,
A will automatically restart the simulation if all mutations being tracked go to fixation or
loss. This is useful if you want many simulations with a particular site to be near frequency
X, since a lot of time can be wasted if you continue simulating after the allele is no longer
segregating. Moreover, if you are interested in simulating a fixed number of generations after
the last population to fix the allele, use the next flag, G followed by the number of generations
(NOTE: not population-scaled!). Note that if you want a very improbable scenario, many
simulations will be rejected. By default, SFS CODE will give up after 10,000 tries. You can
change this default using flag N. Since it is often important to know how many tried it took
to obtain a sample with your desired sampling frequency, the output file is adjusted slightly,
with the total number of tries printed at the end of the “//iteration:1/1;X”. In an unlikely
scenario, X may be large, and a sort of probability for the scenario can be obtained from the
number of successes and failures. Finally, the trajectories are not printed by default. This
is because you may want to condition on the final frequency of an allele, but don’t want to
actually keep the trajectory. To print the trajectory to a file, use the flag F, and include the
desired file name (include the lowercase a before the file name if you want to append to a
file).

Note that the output format has changed to include the iteration as of
version 07/25/2013. If an output file is generated, it will have at least 10 columns. Each
line represents a different mutation event or generation. The entries of each column are as
follows:

1. Iteration

2. Generation

3. Locus

4. Site

5. Generation the mutation arose

6. Ancestral nucleotide
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7. Derived nucleotide

8. Fitness of mutant

9. Number of derived copies in population 0

10. Total number of chromosomes in population 0

. . .

If there are multiple populations, then the last two columns will be represented for each
population (i.e., if there are 2 populations, there will be 11 total columns: 9-10 for population
0, 10-11 for population 1).

Important note. Nothing is printed if a site is fixed or lost in all populations. This
means that if a mutation arises in generation 10 and is lost or fixed in generation 20, then
nothing will be printed for this site for generations 0-9 or 20-[end of simulation]. If there are
multiple populations, and the site is polymorphic in at least one population, then the site
will be printed.

8.5 Report the True Genetic Ancestry of Each Site

When simulating data with migration and/or admixture, it is sometimes of interest to know
the true ancestry of a base being simulated for all individuals. This information can be
output using the following option:

--trackAncestry [a] <file> true
genetic
ancestryThe output file will be created (or appended to if you include the lowercase letter a), and have

1 line for each chromosome sampled. Each line begins with a chromosome identifier (e.g.,
pop0ind0chr0, pop0ind0chr1, etc.), and is followed by a space-delimited list of integers
indicating the population ancestry of each site simulated. Loci are concatenated, so it is
your responsibility to parse the lines correctly.

Mechanistically, this option starts with all sites having population 0 as their ancestral
state. When the population splits (say, -TS 0 0 1), all individuals in the newly formed
population will now have ancestry pointing to population 1. If an individual in population
0 is replaced by a migrant fro population 1, then this individual in population 0 will have
ancestry pointing to population 1. If there is admixture, then the individuals in the derived
population will have ancestry pointing to the population from which they came. If there
is a recombination event between two chromosomes that have different ancestry, then the
ancestry after the breakpoint will swap. This creates a mosaic pattern of genetic ancestry
that is commonly discussed in the admixture mapping literature.

8.6 Output in VCF format

As of the August 2015 release, SFS CODE now allows data to be exported directly in VCF
format. This can be accomplished using the following command:
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Table 3: KEY=value pairs for INFO column in --VCF

KEY value
NS Number of sampled individuals.
AF Allele frequency across all samples.
AXY Indicates Autosomal, X-chromosome, or Y-chromosome
GA Generation variant arose.
GF Generation variant fixed (or sampled).
5P 5’ nucleotide in sequence.
3P 3’ nucleotide in sequence.

NSYN 1 if nonsynonymous, 0 if synonymous.
AA Ancestral amino acid (if coding sequence).
DA Derived amino acid (if coding sequence).
H Dominance coefficient.
S Selection coefficient.

--VCFOutput
VCF

There are no parameters to this command, and it doesn’t have a short name. The VCF
file will be printed to the screen by default, or output to a file using the -o command (p41).
So that there is no loss of information in creation of the VCF output, all the relevant details
of the normal SFS CODE output are stored in the “INFO” column (see Table 3). The header
lines include the targeted VCF format (##fileformat=VCFv4.2), the date the simulations
were run (##fileDate=20150815), the command (##command=./sfs code 1 1 --VCF), the
seed (##SEED=-279262962), the iteration (##iteration=1/1; though it is not clear that
multiple iterations can easily be supported in VCF format), the locus (##locus 0=ACGT...;
unless -A is used), the current population sizes (##Nc=500;), the position male samples start
(##MALES=3;), and finally the variants, preceded by the usual header. Note that individuals
are indicated by their population (p) and index (i) as Np.i. Note that --VCF only works for
diploid individuals, and chromosomes are always perfectly phased.

9 Using convertSFS CODE to Generate Useful Data

The output produced by the program SFS CODE is fairly concise, but is not the easiest
file to parse. I have therefore provided the additional program convertSFS CODE, which
takes the output from SFS CODE, and converts it to a format that might be easier for you
to use. These include various summary statistics, as well as the format required for the
program STRUCTURE [e.g.Falush et al. (2003)], and an output analogous to format used
by the coalescent simulation program ms (Hudson, 2002), among others. The basic usage of
convertSFS CODE is as follows:

./convertSFS CODE <input file> <option [args]>

The <input file> to convertSFS CODE is the output file from SFS CODE. The options
available are outlined in Table 4. As an example, consider generating a human-neandertal-
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chimpanzee alignment using a single chromosome from each. You might consider the follow-
ing slightly modified version of Example 22.

Ex. 23. ./sfs code 3 1 -L 1 66 -TS 0 0 1 -TS 8 1 2 -TE 9 2 -TE 10 -n 1 -o out.txt

This would generate a single simulation of 3 individuals for a locus of length 66 base-
pairs. You could then use convertSFS CODE to generate a fasta-style alignment of one
chromosome using the following example.

Ex. 24. ./convertSFS CODE out.txt -a I 1 0

This would print the alignment of three chromosomes to the screen. It might look like
the following:

>it0pop0ind0locus0

GTATGTATAGGGCTTGGTATTGAAAATAGGTCCCAGGAAATCTTGACCGGCACCCAAGAGGTCATG

>it0pop1ind0locus0

GTATGTATAGGGCTTTATATTGAAAATAGGTCCCAGGAAATCTTGACCGGCACCCAAGAGGTCATG

>it0pop2ind0locus0

GTATGTATAGGGCTTTATATTGAAAATAGGTCCCAGGAAATCTTGACCGGCACCAAAGAGGTCATG

The name of each sequence indicates the iteration (“it0”), the population (“pop0”), the
individual chromosome (“ind0”), and the locus (“locus0”), followed by the actual sequence
on the next line. If you just wanted to extract a single sequence from human and chimpanzee,
then you would use the “P.I” option, which would allow you to select certain chromosomes
from certain populations. In this case, you would use “P.I 2 0.0 1.0” to indicate that you
want two chromosomes to be printed: chromosome 0 from population 0 and chromosome 0
from population 1.

Ex. 25. ./convertSFS CODE out.txt -a P.I 2 0.0 1.0

If you also want to include the true ancestral sequence of each population to be printed,
include the character ‘A’. Note that this is the ancestral sequence of a population, and not
the ancestral sequence of a pair or group of populations. It will be printed just as any other
sequence from a population, but will have “indA”, such that the chromosome identifier is
‘A’.

To generate the McDonald-Kreitman table for the human-chimp simulation, you
would use the following example.

Ex. 26. ./convertSFS CODE out.txt --MK 1 0

This indicates that you want to use population 1 for polymorphism (the human pop-
ulation) and population 0 as an outgroup to call fixed differences (chimp polymorphism
is not included). The output for this particular case is as follows: 0 0 0 2 1.0000. Not
very interesting. There were (in order of appearance) zero synonymous and nonsynonymous
polymorphisms, zero synonymous fixed differences, and two nonsynonymous fixed differ-
ences. The last value given is the Fisher exact test p-value for the table. You can print the
table to a file using the flag “F <filename>”. If you ran several iterations, you can print
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each one independently using “ITS -1”. More generally, if you just want to print the first n
iterations, replace “-1” with “n”, the -1 just allows you to not worry about the actual number
of simulations that were done. By default, the outgroup sample size is 1 (e.g.using just the
reference sequence to call fixed differences), but this can be changed to n using the option
“OGSS n”. This is helpful if you want to test the effect of using multiple outgroup sequences
on calling fixed differences (many sites that are apparently fixed between populations are
actually the result of sampling a common mutation segregating in one of the populations).
Finally, if you want to use parsimony to call synonymous and nonsynonymous mutations
(instead of using their true classification stored during the mutation), use “OBS”. As an ex-
ample, suppose that the file out.txt contained several simulations from two populations
across 3 loci, but we wanted the observed (i.e. using parsimony) MK table for the first locus
using a sample size of 2 for the outgroup. We could use the following example:

Ex. 27. ./convertSFS CODE out.txt --MK 1 0 F mk.txt ITS -1 L 1 0 OGSS 2 OBS

For printing the site-frequency spectrum (SFS), use --SFS. There are many similar
options for this output. However, you can also specify the SFS of just autosomal (A), X or
Y linked SNPs (X or Y, respectively). You can also specify the type of mutations to include
in the SFS (e.g.synonymous, nonsynonymous, or both). In this case, you would use “T 0”,
“T 1”, or “T 2” (respectively). Non-coding mutations are considered synonymous, and will
not be reported for “T 2”. Sometimes using an outgroup to identify the ancestral state of
a polymorphism under parsimony will be wrong (Hernandez et al., 2007b). By default, the
true SFS will be generated, but you can also use parsimony (if you’ve simulated at least two
populations) by including “OBS <ing> <og> [ogsize]”, where ing is the in-group used for
polymorphism, og is the outgroup used for identifying the ancestral states of polymorphisms,
and the optional argument ogsize indicates the number of sequences to use from the outgroup
(default is 1).

To produce output in a similar format as the coalescent simulator ms (Hudson, 2002),
you can use the option --ms. You can print the output to a file using F <file>, and specify
the type of mutations to output (either synonymous/non-coding, T 0; nonsynonymous, T 1;
or both T 2).

You can produce the input file for the Bayesian clustering algorithm STRUCTURE
(Falush et al., 2003) using the option --structure. For this option, you can specify the
centimorgans per megabase (using CMMB <c>), and restrict the output to either specific indi-
viduals (I <n> ...), specific populations (P <n> ...) or specific individuals from specific
populations (P.I. <n> ...).

When simulating many populations, you may want a table showing the number of
private and shared polymorphisms. This can be generated using the --privateShared

option, which will sum the number of private and shared polymorphisms within and between
two populations. This option has common flags such as F <filename> for printing the output
to a file, ITS <n> for printing just the first n iterations (or all iterations independently if
n=1; default is to sum cell entries over all simulations in the file), and T <t> for setting the
type of mutations (e.g.t=0 for synonymous/non-coding, t=1 for nonsynonymous, and t=2
for all mutations). If you simulated more than 2 populations, you can specify which pairwise
comparison you’d like to evaluate using P <p1> <p2>. This will output 3 entries: the number
of polymorphisms private to the first population, the number of polymorphisms private to
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the second population, and then the number of polymorphisms shared between populations.

Since SFS CODE keeps track of the time each mutation arose and fixed (if did), it is
possible to analyze the distribution of ages of mutations in terms of population scaled times
using the option --AGE. This option will print a table with 5 columns for each variant: the
iteration, the locus, the site, the fitness effect, and the population scaled age. This command
allows the following options: F [a] <filename> to print the output to a file, ITS <n> to
print a subset of n iterations, P <pop> to indicate a specific population, and T <type> to
specify a mutant type (0 for synonymous/non-coding, 1 for non-synonymous, and 2 for all
mutations).

Each individuals carries some number of derived alleles. This can be extracted and
analyzed using the command --derivedAlleles. This command will print out a table with
each iteration on a different line, each population tab delimited, and within each population
each individual (corresponding to 2 chromosomes in a diploid population) space delimited.
Each entry corresponds to the number of derived alleles carried by the given individual
(e.g.in a diploid population, homozygous derived genotypes carry 2 alleles while heterozygous
genotypes carry a single allele). You can print the output to a file using F [a] <filename>,
extract only the first n iterations using ITS <n>, or specify a specific type of mutation using T

<t>. You can also count the number of heterozygous/homozygous genotypes carried by each
individual using the option H <h>, where h=0 indicates only heterozygous sites, h=1 indicates
only homozygous sites, and h=2 (the default) counts both heterozygous and homozygous
sites.

You can also analyze the fitness effects of mutations subject to a given criteria. In
particular, using the command --fitness you can print out a table showing the fitness
effect of mutations that are fixed f, private to a given population (or set thereof) p, or
shared between populations S <npops> <p1>...<pnpops>. The output can be sent to a file F

[a] <filename>, restricted to a set of iteration ITS <n>, or restricted to a single population
P <pop>.

It is important to note that you can use several options at once. For example, if you
want to generate both MK tables and the SFS, you can put them both in the command line.
Additionally, if you simulated several species, and want to generate the observed SFS using
species with increasing divergence, then you can just concatenate all your --SFS commands
as follows:

Ex. 28. ./convertSFS CODE out.txt --SFS OBS 0 1 F sfs1.txt \
--SFS OBS 0 2 F sfs2.txt --SFS OBS 0 3 F sfs3.txt

Finally, to reiterate a word of caution mentioned at the end of the last section, when
simulating multiple populations, mutations that have fixed independently in two daughter
lineages will be printed multiple times in the output file. Not all of the commands imple-
mented in convertSFS CODEare robust to this at this time.
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Table 4: convertSFS CODE Options.

long short <arguments> description
--help -h ∅ Display help menu

--alignment -a

Print sequence alignment in fasta format
[A] Print ancestral population sequence

[F <file>] Print sequences to a file

[L <n> <L1>...<Ln>] Only print n loci.

[I <n> <I1>...<In>]
Only print n chromosomes (but from all popula-
tions).

[P <n> <P1>...<Pn>] Only print specific populations.

[P.I <n> <p1.c1>...]
Only print specific chromosomes from specific pop-
ulations

[ITS <n>] Only print first n iterations

--ms -m

Produce ms-style output
[F <file>] Print MK tables to a file

[T <type>]
Extract mutations of <type> = 0, 1, or 2 (synon.,
nonsynon., or both)

--MK -M

Print McDonald-Kreitman tables
<ing> <og> Ingroup and outgroup (required)
[F <file>] Print MK tables to a file

[ITS [n]] Print each iteration [or just first n]
[L <n> <L1>...<Ln>] Only print n loci.

[OGSS <size>] Set the outgroup sample size

[N <n>]
Randomly sample n chromosomes from each pop-
ulation

[OBS]

Use parsimony to call synonymous and nonsyn-
onymous mutations

--structure -s

Print structure input
[F <file>] Print to a file

[CMMB <c>] set centiMorgans/Megabase to c

[I <n> <I1>...<In>]
Only print n chromosomes (but from all popula-
tions).

[P <n> <P1>...<Pn>] Only output specific populations.

[P.I <n> <p1.c1>...]
Only print specific chromosomes from specific pop-
ulations

--SFS -S

Print site-frequency spectra (SFS)
[A] Extract only autosomal loci

[F <file>] Print SFS to a file

[ITS [n]] Print each iteration [or just first n]
[L <n> <L1>...<Ln>] Only print n loci.

[N <n>]
Randomly sample n chromosomes from each pop-
ulation

[OBS <ing> <og> [ogsize]]

Use parsimony to identify ancestral alleles from an
outgroup [using ogsize chromosomes]

[I <n> <I1>...<In>]
Only print n chromosomes (but from all popula-
tions).

[P <n> <P1>...<Pn>] Only output specific populations.

[T <type>]
Extract mutations of <type> = 0, 1, or 2 (synon.,
nonsynon., or both)

[X] Extract only X-linked mutations
[Y] Extract only Y-linked mutations
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10 A Complicated Example for Converting Between ms and SFS CODE

Command-lines

This section is really for the ms aficionados out there. If you are just learning how to use
ms, then previous examples may be sufficient to convert basic commands between the two
programs (e.g., Figure 2 on page 15).

The coalescent simulator ms operates backward in time, with the time of sampling
considered time 0, and increasing as you go back in time to the common ancestor. SFS CODE

operates forward in time, with the time 0 representing the end of the burn-in, and increasing
until the time of sampling. Another complication is that ms scales time by 4×N0 generations
(where N0 refers to a population of your choice, depending on how you code it), and SFS CODE

scales times by P ×NA (where P is the ploidy, and NA is always the ancestral population).

Here is an extremely complicated example of simulating a Mexican-American popu-
lation from Gutenkunst et al. (2009). In order to follow this description, you will need to
consult Figure 3b from that paper.

Description of the model. There are a total of 4 populations in this model: 0=Africa
(YRI), 1=Europe (CEU), 2=Chinese (CHB), and 3=Mexican American (MXL). There is a
historical expansion, followed by an out-of-Africa bottleneck with migration between Africa
and the Eurasian population. Then there are European and Asian specific bottlenecks after
they split, followed by exponential growth with migration. The Native American population
split off from the Asian population, and was isolated until the last generation at which point
the Mexican American population is formed by admixture between Native Americans and
Europeans.

To sample 120 chromosomes from the MXL population requires a LONG command-
line. In ms, you will need to note that the way admixture works is that a dummy population is
created, which must be merged back with the true ancestral population. The command-line
looks like the following:

./ms 120 1 -t 1 -I 4 0 0 0 120 -n 1 1.682020 -n 2 2.424020 -n 3 4.185850 \
-n 4 7.942130 -es 0 4 0.522451 -ej 0 5 2 -eg 0 2 67.978337 -eg 0 3 109.406463

\
-eg 0 4 147.474095 -ema 0 5 x 0 0 0 x 0 x 3.960400 0 x 0 3.960400 x 0 x 0 0 0

\
x x x x x x x -ej 0.029475 4 3 -ema 0.029475 5 x 0.881098 0.561966 x x 0.881098

x \
3.960400 x x 0.561966 3.960400 x x x x x x x x x x x x x -ej 0.036114 3 2 \
-en 0.036114 2 0.287184 -ema 0.036114 5 x 7.293140 x x x 7.293140 \
x x x x x x x x x x x x x x x x x x x -ej 0.197963 2 1 -en 0.303500 1 1

Unfortunately, in SFS CODE, the command is no simpler. . . It has the following form:

./sfs code 5 1 -n 0 0 0 0 60 -Td 0 P 0 1.68202 -TS 0.211074 0 1 \
-Td 0.211074 P 1 0.170737565 -TS 0.534772 1 2 -Td 0.534772 P 1 0.724763218 \
-Td 0.534772 P 2 0.162342748 -Tg 0.534772 P 1 33.98917 -Tg 0.534772 P 2 62.26654

\
-TS 0.54805 2 3 -Td 0.54805 P 3 0.294502108 -Tg 0.54805 P 3 93.86859 -TE 0.607
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\
-TJ 0.607 4 -3 2 3 1 0.522451 0.477549 -Tm 0.211074 P 0 1 6.133603671 \
-Tm 0.211074 P 1 0 1.047236559 -Tm 0.534772 P 0 1 0.741012229 \
-Tm 0.534772 P 0 2 0.472619025 -Tm 0.534772 P 1 0 0.091696045 \
-Tm 0.534772 P 1 2 0.41215962 -Tm 0.534772 P 2 0 0.013100056 \
-Tm 0.534772 P 2 1 0.092321359 -Tm 0.54805 P 0 1 0 -Tm 0.54805 P 0 2 0 \
-Tm 0.54805 P 1 0 0 -Tm 0.54805 P 2 0 0

Now lets work through this step-by-step. Because this command-line is so complicated,
converting these two commands should address most issues that will arise. First, note that
the way this ms command-line is structured, N0 refers to the ancestral population. That
helps us a lot. If it were not the case, then all the timed events would require an additional
factor. Now let’s talk about the timed events (expansions, bottlenecks, splitting).

Let’s look at this forward in time. The ancestral expansion in ms occurs at time 0.3035
(-en 0.303500 1 1). This will be the first event to occur for SFS CODE, and will represent
time zero. Given that ms scales time by 4N generations and SFS CODE scales time by 2N
generations, scaling is off by a factor of 2, so we immediately we know that we are going
to end the SFS CODE simulation at twice the ms time: 0.607 (-TE 0.607). The size of the
ancestral expansion can be determined from the current size of the African population: -Td
0 P o 1.68202. In ms, the out-of-Africa event occurs at time 0.197963 (-ej 0.197963 2

1). Looking at this forward in time, we have 2× (0.305− 0.197963) = 0.211074 as the time
parameter for SFS CODE: -TS 0.211074 0 1.

European and Chinese populations split at time 0.036114 in ms, so in SFS CODE, the
time parameter is 2 × (0.3035 − 0.036114) = 0.534772, which gives: -TS 0.534772 1 2.
The Native Americans split from Chinese at time 0.029475 in the ms command, so the time
parameter in SFS CODE is 2× (0.3035− 0.029475) = 0.54805 which gives: -TS 0.54805 2 3.

For the demographic effects, ms inputs the relative some compared toN0, while SFS CODE

uses the relative size change at the time of the event. These are slightly more tricky to keep
track of, since you have to determine the relative size at each time point. The Eurasian
bottleneck in ms is coded as -en 0.036114 2 0.287184. Note that this represents the end
of the bottleneck going forward in time, and that it actually starts at the time of the split
(join in ms) from Africa at SFS CODE time 0.211074. The population becomes 0.287 × NA,
but it occurs after the expansion, so in SFS CODE the magnitude of the change is actually
0.287184/1.68202=0.170737565, which gives -Td 0.211074 P 1 0.170737565.

The European and Chinese bottlenecks are a bit trickier yet. These population sizes
are not explicitly stated in the ms command-line, since there is exponential growth. However,
given that the final size of the European population (population 2 in ms, population 1 in
SFS CODE) in ms is 2.42402NA and the growth rate was 67.978337, we can back-calculate
what the population size was at the time of the bottleneck using the following equation:
NB = NF × exp(−αt) = 2.4202 × exp(−67.978337 × 0.036114) = 0.2081404 × NA. Anal-
ogously, the size of the Chinese bottleneck was 0.04662224 × NA. The magnitude of the
European bottleneck was then 0.2081404/0.287184 = 0.724763218, and the size of the Chi-
nese bottleneck was 0.04662224/0.287184 = 0.162342748. The options for the events were
then -Td 0.534772 P 1 0.724763218 -TD 0.534772 P 2 0.162342748.

The exponential growth rates in ms are different from what they should be in SFS CODE
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because of the scaling issue, and growth being determined by the current size in SFS CODE

rather than the ancestral size in ms. you can calculate the growth parameter using the
relative effective sizes at the beginning and end of growth: αSFS CODE = log(NF/NB)/t. For
the European population, this is then αE = log(2.42/0.2081404)/0.072228 = 33.98917. This
is set using the flag -Tg 0.534772 P 1 33.9817. The other grown rates are analogous.

The migration rates are yet even trickier. Both SFS CODE and ms use a population scaled
migration rate. However, SFS CODE uses 2 times the current effective population size (holding
the underling rate constant), whereas ms uses 4N0, and updates the rate as the population
size changes. Again, we are off by a factor of 2 and the relative effective population sizes.
So, mSFS CODE = mms × NB/2. For the migration rate corresponding to CHB into CEU,
we have 3.9604 × 0.2081404/2 = 0.41215962. The other migration rates are analogous and
relatively straight forward once you know the population size at each transition.

The last remaining component is admixture. In SFS CODE, admixture results in creating
a new population, so MXL is actually population 3 in the SFS CODE command above. Since
the admixture event occurs in the last generation, the command is fairly straightforward to
put together if you’ve made it this far. The time is just the time of sampling (0.607), the
population size is just going to be the size of population 3 (the Native Americans), and the
proportions of european and Native American contributions are exactly the same as in the
ms code, 0.522451 from Europe and the rest from Native Americans.

11 Examples

This section will include additional examples to demonstrate usage of SFS CODE. Over time,
this section will grow to include relevant demographic models and distributions of selection
coefficients from the literature.

11.1 Recurrent Hitchhiking

Simulating recurrent hitchhiking (RHH) in a forward population genetic framework is a bit
involved. Say we are interested in a population of, N = 5 × 103 with substitution rate
λ = 8 × 10−8 per base pair per generation, α = 2Ns = 103, ρ = 8 × 10−3, and a neutral
mutation rate of θn = 2 × 10−3. We include a neutral locus of lengthLn = 103 bp that is
flanked by loci on either side that are subject to selection and are each of length Lf = 105

bp.

In a forward simulation, you can only specify the mutation rate, not the substitution
rate. So, for a given substitution rate λ, we must divide by the fixation probability to obtain
the corresponding mutation rate of selected mutations. Let ν be the per base pair mutation
rate in the flanking loci:

ν =
λ

Pfix
=
λ(1− e−2α)

(1− e−2s)
= 4.413× 10−9 (3)

In SFS CODE, we can only specify a single value of θ. The mean number of mutations that
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enter the population each generation would then be θ
∑
Li/2. However, the mean number

of mutations we want entering the population in the neutral locus is Lnθn/2, and the mean
number of mutations entering each flanking locus is Lfν. Setting the sum of these two terms
equal to θ

∑
Li/2 and solving for θ gives us our overall θ to use in the simulation:

θ =
Lnθn + 4Lfν

Ln + 2Lf
= 9.959× 10−6 (4)

Lastly, we specify the rates of mutation that enter the flanking and neutral loci using the
option -v described on page 25: -v L 0 Lfν -v L 1 Lnθn -v L 2 Lfν. The command
line supplied to SFS CODE is then:

Ex. 29. sfs code 1 1 -t 9.959e-06 -Z -r 0.008 -N 5000 -n 10 -L 3 1e5 1e3 1e5

\
-a N R -v L 0 4.41e-4 -v L 1 2.0 -v L 2 4.41e-4 -W L 0 1 1e3 1 0 -W L 2 1 1e3

1 0

12 Default Parameter Values

Running SFS CODE with the default parameters will generate a sample of six diploid in-
dividuals (12 chromosomes) under the standard neutral model assumptions of a constant
population size, absence of selection, etc. Every parameter discussed below can be changed
using the command line options described in Table 6. The full list of default parameter
values are given in Table 5.

13 Summary of Options and Arguments

In SFS CODE, an option is a feature that allows you to change the characteristics of the
simulation. Every option implemented in SFS CODE is summarized in table 6. There are
basically five types of options: (1) those that control the output, (2) those those that affect
all populations or set foundation for the simulation (“Global Options”), (3) those that may
be population specific (“Population Options”), (4) those that describe the effect of natural
selection, and (5) those that govern the demographic events (“Evolutionary Events”). All
options (except evolutionary events) have both a long name (preceded by two dashes) and
a short name (a single character preceded by a single dash), which can be used interchange-
ably (e.g.you could either use “--theta 0.01” or “-t 0.01” to set the population scaled
mutation rate to 0.01 for all populations). Most options have arguments. Arguments that
are required are enclosed in <angled brackets>. Arguments that are optional are enclosed
in [square brackets].

Some options apply to all populations (e.g.the length of the simulated sequence -L),
and some apply only to a specific population (such as the generation effect -G). Others
default to all populations, but allow you to specify a specific population. These are denoted
by [P <pop>] in the argument list. This means that you can add the character ‘P’ followed
by the number of a specific population to apply the option to that population exclusively.
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Table 5: Default parameter values used in SFS CODE.
Parameter value

Effective population size 500

Ploidy 2

Allo- (0) or Auto-ploidy (1) 0

Relative size of female population 0.5

Sample size for each population 6

Migration between populations 0.0

Probability male migrates (if migration) 0.5

θ/site 0.001

Substitution model 0

Number of mutation rate classes (sites) 1

Number of mutation rate classes (loci) 1

Infinite sites? no

ρ/site 0.0

Number of loci 1

Length of locus (bp) 5000

Linkage within loci 0.0

Annotation C

Sex chromosome? no

Self-fertilization rate 0.0

Selection distribution 0

Proportion of loci subject to selection 1.0

Non-lethal mutation rate 1.0

Initial burn-in period (×PN) 5

Burn-in period of subsequent iterations 2

Print ancestral sequence? yes

For example, if you are simulating two populations, one of which is twice the size of the
other, you might add “-N P 1 1000” to your command line.

Generally speaking, options can be used in any order. The exceptions are --linkage,
--annotate, and --sex, which must come after -L if -L is used (if -L is not used, then
order really doesn’t matter). However, arguments for each option are in a specified order,
and must always be used in the proper order.
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Table 6: SFS CODE Options

long shorta <arguments> description
O
u
tp

u
t

--help -h ∅ Display help menu. (p6)
--noSeq -A ∅ DO NOT print ancestral sequences. (p41)

--outfile -o [a] <file>
Write [or <a>ppend] output to a <file> in-
stead of the screen. (p41)

--errfile -e [a] <file>
Write [or <a>ppend] error messages to a
<file>. (p41)

--popFreq -F [a] <file>
Write [or <a>ppend] sample/population fre-
quencies to a <file>. (p43)

--ReportBurnFixed -R ∅ Report mutations that fixed during the burn-
in period with the rest of the output. (p40)

S
e
le
c
ti
o
n --additive -Z ∅ Use an additive model of selection. (p15)

--selDistType -W∗ [P/L/F...] <type> [arg]
Distribution of selective effects. (p16, Ta-
ble 1)

--neutPop -w∗ <pop> No selection on population <pop>. (p18)

--constraint -c∗ [P/L] <f0>
Set the proportion of non-lethal mutations to
<f0>. (p19)

G
lo
b
a
l
O
p
ti
o
n
s

--BURN -B <burn> Burn-in time for initial population. (p8)

--BURN2 -b <burn>
Burn-in time for subsequent simulations.
(p8)

--length -L <R> <L1> [<L2>..] [R]

Simulate <R> loci (regions) with lengths <L1>
[<L2>... opt.; add ‘R’ after a subset of lengths
to repeat]. (p8)

--linkage -l <p/g> <d1> [<d2>..] [R]

Set linkage between adjacent loci (either
<p>hysical, or <g>genetic distance) to <d1>

[<d2> ..<dR-1> opt.; add ‘R’ to repeat pat-
tern]. MUST USE AFTER -L. (p9)

--annotate -a <a1> [<a2>..<aR>] [R]

Annotate each locus as C (coding) or N (non-
coding) [<a2>..<aR> opt; add ‘R’ to repeat
pattern]. Note: If coding (default), length
will be rounded to nearest codon. (p10)

--sex -x <x1> [<x2>...] [R]

Annotate sex loci, either 0 or 1 (autosomal
or sex, resp.). Use only <x1>, or specify each
locus, or put ‘R’ at end to repeat a subset.
Only implemented for the diploid case (P=2).
Males do not recombine at sex loci. (p10)

--ploidy -P <ploidy>

Set the ploidy of all populations to <ploidy>

(1,2,4 only; i.e. haploid, diploid, or
tetraploid). (p12)

--tetraType -p <0/1>
If P=4 (tetraploid) assume auto- or allote-
traploid (0 or 1, resp.). (p13)

--substMod -M <mod> [args] Set the mutation model. (p23, Table 2.)

--INF SITES -I ∅
Avoid multiple mutations segregating at the
same site concurrently. Multiple hits can still
occur for long divergence times. (p25)

--seed -s <int>

Set random number seed to <int>. This
should always be set manually if using this
program on a cluster!! (p37)

Continued on next page. . .
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long shorta <arguments> description

P
o
p
u
la
ti
o
n

O
p
ti
o
n
s

--theta -t∗ [P <p>] <θ>
Set the PER SITE population scaled muta-
tion rate to <θ> for ALL populations [or just
population <p>]. (p7)

--rho -r∗ [P <p>] <ρ>
Set the PER SITE population scaled recom-
bination rate to <ρ> for ALL populations [or
just population <p>]. (p7)

--pMaleRec -Y∗ [P <pop>] <p>
Set the proportion of recombinants originat-
ing in the paternal lineage. (p8)

--geneConversion -H∗ [P <pop>] [B <BGC>] <f> <λ> Set the parameters for gene conversion. (p27)

--indel -u∗ [P <p>] <INS> <DEL> <LEN>

Set the PER SITE population scaled indel
rates and lengths for ALL populations [or just
population <p>]. (p31)

--longIndel -U∗ [P <p>] <INS> <DEL> <LEN>

Set the PER SITE population scaled indel
rates and lengths for ALL populations [or just
population <p>]. (p31)

--inversion -z∗ [P <p>] <INV> <LEN>

Set the PER SITE population scaled inver-
sion rate and lengths for ALL populations [or
just population <p>]. (p32)

--popSize -N∗ [P <p>] <size>
Set all population to size <size> ’P’-ploid in-
dividuals [or just population <p>]. (p11)

--sampSize -n P/R/S/<SS1>[..<SSNPOP>]

Sample <SS1> individuals from population
1, ..., <SSNPOP> individuals from population
NPOP. Use the value -1 to sample an entire
population. (p??)

--admixture -TJ

<τ> <P> <N> <Nanc> Create admixed population P of size N from
Nanc populations with proportions Mi from
population Pi, and optionally different
female proportions. (p22)

<P1>..<PN>
<M1>..<MN>

[F <F1>..<FN>]

--migMat -m∗
A <M>

Set the migration rate to/from all pops to
<M>/(NPOP-1). (p21)

P <Pto> <Pfrom> <M> Set the migration rate entry mto,from = <M>

L <M0,1>...<MNPOP,NPOP-1> Set all entries of the migration matrix.

--pMaleMig -y∗ [P <p>] <pmale>

Set the proportion of migrants out of each
population [or just population <p>] that are
male to <pmale>. (p22)

--propFemale -f [P <p>] <pf>

Set the proportion of females in each pop-
ulation [or just <pop>] to <pf>, default 0.5.
(p22)

--self -i∗ [P <p>] <s>
Set the selfing rate <s> for ALL populations
[or just population <p>]. (p32)

--KAPPA -K∗ [P <p>] <κ>
Set transition/ transversion rate ratio <κ>
(only valid for --substMod 2 or 3). (p24)

--PSI -C∗ [P <p>] <ψ>
Set CpG bias parameter (non-CpG rejection
rate; only valid for --substMod 1 or 3). (p24)

--baseFreq -q∗ [P <p>] <πC> <πG> <πT > <πA> Set equilibrium nucleotide frequencies. (p23)

--rateClassSites -V [P <p>] <nclasses> <α>
Mutation rate variation among sites in loci
(discrete Gamma model of <nclasses> classes
with rate <α> and mean 1). (p25)

--rateClassLoci -v [L <l/r>] [[P <p>] <nc> <α>]
Mutation rate variation among loci (discrete
Gamma model of <nclasses> classes with rate
<α> and mean 1). (p25)

Continued on next page. . .
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long shorta <arguments> description

--GenEffect -G∗ <pop> <G>

Generation time effect. <G> > 1 makes <pop>
experience <G> rounds of mating each gener-
ation while if <G> < −1 mating occurs only
every |<G>| generations. <G> must be an in-
teger, with <G> > 0 or <G> < −1. (p33)

E
v
o
lu
ti
o
n
a
ry

E
v
e
n
ts

-Td <τ> [P <p>] <ν>

Discrete population size change at time <τ>
with magnitude <ν> = Nnew/Nold, where Nold
is the size of <pop> prior to the event, NOT
ANCESTRAL! (p11)

-Tg <τ> [P <p>] <α>
Set the exponential growth rate of a popula-
tion to <α> at time <τ>. (p12)

-Tk <τ> [P <p>] <K> <r>

Logistic growth at rate <r> beginning at time
<τ> until final population size <K> is reached.
(p12)

-TE <τ> [p]
Terminate simulation [or just a population]
at time <τ>× PN0. (p13)

-TS <τ> <i> <j>
Split population <i> at time <τ>×PN gener-
ations to found population <j>. (p19)

-TD <τ> <i> <j> <f> <N> [l]

Domesticate population <j> with <N> indi-
viduals from <i> at time <τ> using a derived
allele at frequency <f>±5%. (p20)

O
th

e
r

--mutation <τ> [P/L] [S <s>] [G <γ>]
Introduce a mutation at a specified time,
place and fitness. (p26)

--printGen
Print each generation throughout the simula-
tion. (p40)

--trackAncestry [a] <file>
Print true ancestry of each position and chro-
mosome. (p45)

--trackTrajectory [T/P/L/S/R.../F] Track frequency trajectory. (p43)

aAsterisk in short name indicates that the parameters can be changed (or option initiated) at any time using
-T<short name> <τ> <args>. See Section 4.9 on page 33.
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